[机器学习]练习-KNN算法

1.𝑘近邻法是基本且简单的分类与回归方法。𝑘近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的𝑘个最近邻训练实例点,然后利用这𝑘个训练实例点的类的多数来预测输入实例点的类。

2.𝑘近邻模型对应于基于训练数据集对特征空间的一个划分。𝑘近邻法中,当训练集、距离度量、𝑘值及分类决策规则确定后,其结果唯一确定。

3.𝑘近邻法三要素:距离度量、𝑘值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。𝑘值小时,𝑘近邻模型更复杂;𝑘值大时,𝑘近邻模型更简单。𝑘值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的𝑘。常用的分类决策规则是多数表决,对应于经验风险最小化。

4.𝑘近邻法的实现需要考虑如何快速搜索k个最近邻点。kd 树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对𝑘维空间的一个划分,其每个结点对应于𝑘维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

距离度量

在机器学习算法中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距离。

设𝑥和𝑦为两个向量,求它们之间的距离。

这里用Numpy实现,设和为ndarray <numpy.ndarray>,它们的shape都是(N,)

𝑑为所求的距离,是个浮点数(float)。

欧氏距离(Euclidean distance)

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在𝑚�维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

距离公式:

python 复制代码
编写欧氏距离代码
##### 在此处编写或补全代码
import math
def euclidean(x, y):
    d = 0.
    for xi, yi in zip(x, y):
        d += (xi-yi)**2
    return math.sqrt(d)
a=euclidean([1,2,3], [4,5,6])
计算
a = np.array((2,3))
b = np.array((10,5))
##### 在此处编写或补全代码
op1=np.sqrt(np.sum(np.square(a-b)))  
op2=np.linalg.norm(a-b)  
print(op1)  
print(op2) 

计算结果:

相关推荐
NAGNIP44 分钟前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
聚客AI1 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar1 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生2 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队2 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁3 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊4 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元5 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒5 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生5 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能