[机器学习]练习-KNN算法

1.𝑘近邻法是基本且简单的分类与回归方法。𝑘近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的𝑘个最近邻训练实例点,然后利用这𝑘个训练实例点的类的多数来预测输入实例点的类。

2.𝑘近邻模型对应于基于训练数据集对特征空间的一个划分。𝑘近邻法中,当训练集、距离度量、𝑘值及分类决策规则确定后,其结果唯一确定。

3.𝑘近邻法三要素:距离度量、𝑘值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。𝑘值小时,𝑘近邻模型更复杂;𝑘值大时,𝑘近邻模型更简单。𝑘值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的𝑘。常用的分类决策规则是多数表决,对应于经验风险最小化。

4.𝑘近邻法的实现需要考虑如何快速搜索k个最近邻点。kd 树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对𝑘维空间的一个划分,其每个结点对应于𝑘维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。

距离度量

在机器学习算法中,我们经常需要计算样本之间的相似度,通常的做法是计算样本之间的距离。

设𝑥和𝑦为两个向量,求它们之间的距离。

这里用Numpy实现,设和为ndarray <numpy.ndarray>,它们的shape都是(N,)

𝑑为所求的距离,是个浮点数(float)。

欧氏距离(Euclidean distance)

欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在𝑚�维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

距离公式:

python 复制代码
编写欧氏距离代码
##### 在此处编写或补全代码
import math
def euclidean(x, y):
    d = 0.
    for xi, yi in zip(x, y):
        d += (xi-yi)**2
    return math.sqrt(d)
a=euclidean([1,2,3], [4,5,6])
计算
a = np.array((2,3))
b = np.array((10,5))
##### 在此处编写或补全代码
op1=np.sqrt(np.sum(np.square(a-b)))  
op2=np.linalg.norm(a-b)  
print(op1)  
print(op2) 

计算结果:

相关推荐
我不是QI21 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来21 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型21 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
想唱rap21 小时前
C++ map和set
linux·运维·服务器·开发语言·c++·算法
声网1 天前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp1 天前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48411 天前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元1 天前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
想你依然心痛1 天前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术
小欣加油1 天前
leetcode 1018 可被5整除的二进制前缀
数据结构·c++·算法·leetcode·职场和发展