新书速递——《可解释AI实战(PyTorch版)》

本书旨在帮助你实施最新的可解释AI技术,以构建公平且可解释的AI系统。可解释AI是当今AI研究中的热门话题,但只有少数资源和指南涵盖了所有重要技术,这些技术对实践者来说非常有价值。本书旨在填补这一空白。

本书读者对象

本书既适合那些有兴趣深入了解其模型工作原理以及如何构建公平且无偏见模型的数据科学家和工程师,又适合想要了解如何让 AI 模型确保公平和保护业务用户、品牌的架构师和业务利益相关者。

本书内容

本书内容分为4部分,共9章。

第Ⅰ部分介绍可解释AI的基础知识。

● 第1章涵盖了各种类型的AI系统,定义了可解释AI及其重要性,讨论了白盒和黑盒模型,并解释了如何构建可解释AI系统。

● 第 2 章涵盖了白盒模型以及如何解释它们,特别关注了线性回归、决策树和广义可加模型(Generalized Additive Model,GAM)。

第Ⅱ部分关注黑盒模型,讲述它们如何处理输入并得出最终预测。

● 第 3 章涵盖了一种名为集成树的黑盒模型,以及全局与模型无关的可解释方法:部分依赖图(Partial Dependence Plot,PDP)和特征交互图。

● 第 4 章涵盖了深度神经网络,以及局部与模型无关的可解释方法:局部与模型无关解释(Local Interpretable Model-agnostic Explanations,LIME)、沙普利可加性解释(SHapley Additive exPlanations,SHAP)、锚定。

● 第5章涵盖了卷积神经网络,并使用局部、建模后、模型无关的可解释方法(如梯度、导向反向传播、梯度加权类别激活图(Grad-CAM)、导向梯度加权类别激活图和平滑梯度等)。

第Ⅲ部分继续关注黑盒模型,但主要解释它们如何学习特征或表示。

● 第 6 章涵盖了卷积神经网络,以及如何通过剖析它们来了解学习到的数据表示技巧。

● 第7章涵盖了语言模型,以及使用诸如主成分分析(PCA)和t分布随机近邻嵌入(t-SNE)等技术将其高维表示可视化的方法。

第Ⅳ部分关注公平和偏见,并讲述了XAI系统。

● 第 8 章涵盖了各种公平和偏见定义以及检查模型是否有偏见的方法,并讨论了如何减轻偏见和标准化数据以使用数据表来提高透明度和改善问责制的方法。

● 第9章涵盖了XAI,以及使用反事实样本进行对比解释。

本书代码

本书包含许多源代码示例,大多数情况下,这些源代码示例都以等宽字体显示,以便与本书的普通文本区分开来。本书所有代码示例都可通过扫描封底的二维码下载。

相关推荐
美狐美颜sdk43 分钟前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程1 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝1 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion3 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周3 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
思则变4 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
叶子爱分享4 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜4 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿4 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_5 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习