卷积神经网络的基本概念——【1】卷积和池化

卷积神经网络利用滤波器(即内核)来检测图像中展示的特征,例如边缘。卷积神经网络四个主要的操作如下:

  • 卷积
  • 非线性(ReLU)
  • 池化或子采样(Sub Sampling)
  • 分类(全连接层)

一、卷积

卷积是两股信息源交织在一起的有序的过程;亦是一个把函数转换成其它东西的操作。

卷积已经长时间在图像处理中被用于模糊和锐化图像,但也执行其它操作如增强边缘和浮雕(emboss)。卷积神经网络增强了相邻神经元之间的局部连接模式。

卷积层:

卷积神经网络的第一层永远是卷积层。卷积层对输入进行卷积操作,把结果传给下一层。一个卷积操作将感受野内的所有像素转换昵称一个值。例如,如果你对一个图像进行卷积操作,相当于你把图像尺寸变小了,或者说把感受野内所有的信息变成了一个像素。最后卷积层的输出就变成了一个vector向量,如[1,2,3]这种。基于要处理问题的类型和我们希望学习的特征的种类,我们可以使用不同种类的卷积。

二、池化

池化操作包括在特征图的每个通道上滑动一个二维的滤波器,并求出被滤波器覆盖的区域的特征和。

对于一个维度为的 特征图,经过一个池化层获得的输出的维度为:

其中, 分别为特征图的高度、宽度、通道数目。f为滤波器的大小,s为滤波器移动的步长。

一个常见的卷积神经网络模型结构有多个卷积和池化层,一个个堆叠在一起。

使用池化的原因:池化层被用于减少特征图的维度,由此可以减少需要学习的参数和网络中计算的次数;池化层对卷积层产生的特征图的区域中的特征进行了求和,因此,更进一步的操作是在求和的特征上进行的,而不是被卷积层产生的精准位置的特征。池化使得模型对于输入图片的特征位置的变化更具有鲁棒性。

最大池化(max pooling):

平均池化是将滤波器覆盖范围内的特征图中的元素取平均值。因此最大池化就是给出特征图 特定批次patch的最显著特征,即取元素最大值。示例图如下:

相关推荐
Piink5 分钟前
网络模型训练完整代码
人工智能·深度学习·机器学习
淬炼之火2 小时前
基于pycharm和anaconda的yolo简单部署测试
python·深度学习·yolo·pycharm·ultralytics
麦麦大数据2 小时前
F024 CNN+vue+flask电影推荐系统vue+python+mysql+CNN实现
vue.js·python·cnn·flask·推荐算法
算法打盹中2 小时前
计算机视觉:卷积神经网络(CNN)图像分类从像素与色彩通道基础到特征提取、池化及预测
图像处理·神经网络·计算机视觉·cnn·图像分类
java1234_小锋3 小时前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras.Model来定义模型
python·深度学习·tensorflow·tensorflow2
Learn Beyond Limits3 小时前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
java1234_小锋3 小时前
TensorFlow2 Python深度学习 - 函数式API(Functional API)
python·深度学习·tensorflow·tensorflow2
机器学习之心3 小时前
198种组合算法+优化CNN卷积神经网络+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!
深度学习·shap分析·优化cnn卷积神经网络
叶楊4 小时前
PEFT适配器加载
人工智能·深度学习·机器学习
AI街潜水的八角4 小时前
垃圾桶满溢检测和识别2:基于深度学习YOLOv12神经网络实现垃圾桶满溢检测和识别(含训练代码和数据集)
深度学习·神经网络·yolo