卷积神经网络的基本概念——【1】卷积和池化

卷积神经网络利用滤波器(即内核)来检测图像中展示的特征,例如边缘。卷积神经网络四个主要的操作如下:

  • 卷积
  • 非线性(ReLU)
  • 池化或子采样(Sub Sampling)
  • 分类(全连接层)

一、卷积

卷积是两股信息源交织在一起的有序的过程;亦是一个把函数转换成其它东西的操作。

卷积已经长时间在图像处理中被用于模糊和锐化图像,但也执行其它操作如增强边缘和浮雕(emboss)。卷积神经网络增强了相邻神经元之间的局部连接模式。

卷积层:

卷积神经网络的第一层永远是卷积层。卷积层对输入进行卷积操作,把结果传给下一层。一个卷积操作将感受野内的所有像素转换昵称一个值。例如,如果你对一个图像进行卷积操作,相当于你把图像尺寸变小了,或者说把感受野内所有的信息变成了一个像素。最后卷积层的输出就变成了一个vector向量,如[1,2,3]这种。基于要处理问题的类型和我们希望学习的特征的种类,我们可以使用不同种类的卷积。

二、池化

池化操作包括在特征图的每个通道上滑动一个二维的滤波器,并求出被滤波器覆盖的区域的特征和。

对于一个维度为的 特征图,经过一个池化层获得的输出的维度为:

其中, 分别为特征图的高度、宽度、通道数目。f为滤波器的大小,s为滤波器移动的步长。

一个常见的卷积神经网络模型结构有多个卷积和池化层,一个个堆叠在一起。

使用池化的原因:池化层被用于减少特征图的维度,由此可以减少需要学习的参数和网络中计算的次数;池化层对卷积层产生的特征图的区域中的特征进行了求和,因此,更进一步的操作是在求和的特征上进行的,而不是被卷积层产生的精准位置的特征。池化使得模型对于输入图片的特征位置的变化更具有鲁棒性。

最大池化(max pooling):

平均池化是将滤波器覆盖范围内的特征图中的元素取平均值。因此最大池化就是给出特征图 特定批次patch的最显著特征,即取元素最大值。示例图如下:

相关推荐
缘友一世3 分钟前
PyTorch深度神经网络(前馈、卷积神经网络)
pytorch·cnn·dnn
tyatyatya2 小时前
MATLAB 神经网络的系统案例介绍
开发语言·神经网络·matlab
高建伟-joe4 小时前
内容安全:使用开源框架Caffe实现上传图片进行敏感内容识别
人工智能·python·深度学习·flask·开源·html5·caffe
tyatyatya4 小时前
MATLAB的神经网络工具箱
开发语言·神经网络·matlab
卡尔曼的BD SLAMer5 小时前
计算机视觉与深度学习 | Python实现EMD-SSA-VMD-LSTM-Attention时间序列预测(完整源码和数据)
python·深度学习·算法·cnn·lstm
pk_xz1234565 小时前
实现了一个结合Transformer和双向LSTM(BiLSTM)的时间序列预测模型,用于预测温度值(T0),并包含了物理约束的损失函数来增强模型的物理合理性
深度学习·lstm·transformer
落樱弥城6 小时前
角点特征:从传统算法到深度学习算法演进
人工智能·深度学习·算法
大模型铲屎官9 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
一点.点10 小时前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
Stara051110 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11