卷积神经网络的基本概念——【1】卷积和池化

卷积神经网络利用滤波器(即内核)来检测图像中展示的特征,例如边缘。卷积神经网络四个主要的操作如下:

  • 卷积
  • 非线性(ReLU)
  • 池化或子采样(Sub Sampling)
  • 分类(全连接层)

一、卷积

卷积是两股信息源交织在一起的有序的过程;亦是一个把函数转换成其它东西的操作。

卷积已经长时间在图像处理中被用于模糊和锐化图像,但也执行其它操作如增强边缘和浮雕(emboss)。卷积神经网络增强了相邻神经元之间的局部连接模式。

卷积层:

卷积神经网络的第一层永远是卷积层。卷积层对输入进行卷积操作,把结果传给下一层。一个卷积操作将感受野内的所有像素转换昵称一个值。例如,如果你对一个图像进行卷积操作,相当于你把图像尺寸变小了,或者说把感受野内所有的信息变成了一个像素。最后卷积层的输出就变成了一个vector向量,如[1,2,3]这种。基于要处理问题的类型和我们希望学习的特征的种类,我们可以使用不同种类的卷积。

二、池化

池化操作包括在特征图的每个通道上滑动一个二维的滤波器,并求出被滤波器覆盖的区域的特征和。

对于一个维度为的 特征图,经过一个池化层获得的输出的维度为:

其中, 分别为特征图的高度、宽度、通道数目。f为滤波器的大小,s为滤波器移动的步长。

一个常见的卷积神经网络模型结构有多个卷积和池化层,一个个堆叠在一起。

使用池化的原因:池化层被用于减少特征图的维度,由此可以减少需要学习的参数和网络中计算的次数;池化层对卷积层产生的特征图的区域中的特征进行了求和,因此,更进一步的操作是在求和的特征上进行的,而不是被卷积层产生的精准位置的特征。池化使得模型对于输入图片的特征位置的变化更具有鲁棒性。

最大池化(max pooling):

平均池化是将滤波器覆盖范围内的特征图中的元素取平均值。因此最大池化就是给出特征图 特定批次patch的最显著特征,即取元素最大值。示例图如下:

相关推荐
吃人陈乐游刘17 小时前
05实战经验X-anylabelingAI自动标注数据集-onnx简单解绍(2025年12月)
人工智能·深度学习
Rainly200017 小时前
深度学习旅程之数学统计底座
人工智能·深度学习
小鸡吃米…17 小时前
带Python的人工智能——深度学习
人工智能·python·深度学习
白日做梦Q17 小时前
预训练模型微调(Finetune)实战:策略、技巧及常见误区规避
人工智能·python·神经网络·机器学习·计算机视觉
玄同76517 小时前
Python 流程控制:LLM 批量推理与 API 限流处理
服务器·人工智能·python·深度学习·自然语言处理·数据挖掘·知识图谱
橙汁味的风18 小时前
4神经网络框架
人工智能·深度学习·神经网络
Java后端的Ai之路18 小时前
【神经网络基础】-从生物神经元到人工神经元
人工智能·深度学习·神经网络·机器学习
白日做梦Q19 小时前
生成式AI的底层逻辑:GAN、VAE与扩散模型的对比及研究切入点
人工智能·深度学习·机器学习
白日做梦Q19 小时前
深度学习可解释性研究综述:从特征可视化到因果推理
人工智能·深度学习
CP-DD19 小时前
训练可以正常开始 一到 Validation 就直接炸 a PTX JIT compilation failed
python·深度学习·计算机视觉