通过mapreduce程序统计旅游订单(wordcount升级版)

通过mapreduce程序统计旅游订单(wordcount升级版)

本文将结合一个实际的MapReduce程序案例,探讨如何通过分析旅游产品的预订数据来揭示消费者的偏好。

程序概览

首先,让我们来看一下这个MapReduce程序的核心代码。这个程序的目的是处理一个包含旅游产品预订信息的文本文件,并统计每个产品特性的出现次数。Map阶段的代码如下:

java 复制代码
public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        if (key.get() > 0) { // 跳过表头
            String line = value.toString();
            String[] fields = line.split("\t");
            if (fields.length > 1 && !fields[1].isEmpty()) {
                String[] arrstr = Arrays.copyOfRange(fields, 8, fields.length - 1);
                for(String str:arrstr){
                    if(StringUtils.isNotBlank(str)){
                        word.set(str);
                        context.write(word, new IntWritable(1));
                    }
                }
            }
        }
    }
}

Reduce阶段的代码如下:

java 复制代码
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}

全部代码

java 复制代码
package org.example;
import java.io.IOException;
import java.util.Arrays;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;

public class KeyWord{

    public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {

        //        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            if (key.get() > 0) { // 跳过表头
                String line = value.toString();
                String[] fields = line.split("\t");

                if (fields.length > 1 && !fields[1].isEmpty()) {
                    String[] arrstr = Arrays.copyOfRange(fields, 8, fields.length - 1);
                    for(String str:arrstr){
                        if(StringUtils.isNotBlank(str)){
                            word.set(str);
                            context.write(word, new IntWritable(1));
                        }
                    }
//                    int a;
//                    if(StringUtils.isNotBlank(fields[4])){
//                        a = Integer.parseInt(fields[4]);
//                    }else{
//                        a=0;
//                    }
                }
            }
        }
    }

    public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;

            for (IntWritable val : values) {
                sum += val.get();
            }
            context.write(key, new IntWritable(sum));
        }
    }



    public  void keyWorsds() throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "Word Count on Second Field");

        job.setJarByClass(KeyWord.class);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setInputFormatClass(org.apache.hadoop.mapreduce.lib.input.TextInputFormat.class);
        job.setOutputFormatClass(org.apache.hadoop.mapreduce.lib.output.TextOutputFormat.class);

        org.apache.hadoop.mapreduce.lib.input.FileInputFormat.addInputPath(job, new Path("/Users/shareit/ds_task_am/wordcount/src/main/resources/mapreduce数据(1).txt"));
        org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.setOutputPath(job, new Path("/Users/shareit/ds_task_am/wordcount/producttotalhuman"));
        job.waitForCompletion(true);
    }
}

结论

通过MapReduce程序对旅游产品预订数据的分析,我们能够洞察到消费者的偏好和行为模式。这些信息对于旅游企业来说是宝贵的,可以帮助他们更好地定位市场,设计符合消费者需求的产品,并最终提高客户满意度和市场份额。随着数据分析技术的不断进步,旅游行业将能够更加精准地满足消费者的需求,推动行业的持续发展。
如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设,代写各种mapreduce程序等。不限于python,java,大数据,模型训练等。

相关推荐
新新学长搞科研8 分钟前
【CCF主办 | 高认可度会议】第六届人工智能、大数据与算法国际学术会议(CAIBDA 2026)
大数据·开发语言·网络·人工智能·算法·r语言·中国计算机学会
Cx330❀2 小时前
从零实现Shell命令行解释器:原理与实战(附源码)
大数据·linux·数据库·人工智能·科技·elasticsearch·搜索引擎
岱宗夫up2 小时前
.env 文件是干啥的?为什么不能提交到 Git?
大数据·git·elasticsearch·搜索引擎·gitee·github·gitcode
Guheyunyi10 小时前
智能守护:视频安全监测系统的演进与未来
大数据·人工智能·科技·安全·信息可视化
发哥来了11 小时前
主流AI视频生成商用方案选型评测:五大核心维度对比分析
大数据·人工智能
数研小生12 小时前
做京东评论分析系统11年,京东评论数据接口解析
大数据
金融小师妹12 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
yumgpkpm14 小时前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
xixixi7777714 小时前
今日 AI 、通信、安全行业前沿日报(2026 年 2 月 4 日,星期三)
大数据·人工智能·安全·ai·大模型·通信·卫星通信
珠海西格16 小时前
1MW光伏项目“四可”装置改造:逆变器兼容性评估方法详解
大数据·运维·服务器·云计算·能源