基于PaddleNLP的深度学习对文本自动添加标点符号(二)

前言

基于PaddleNLP的深度学习对文本自动添加标点符号的源码版来了,本篇文章主要讲解如何文本自动添加标点符号的原理和相关训练方法,前一篇文章讲解的是使用paddlepaddle已经训练好的一些模型,在一些简单场景下可以通过这些模型进行预测,但是在复杂场景下,就必须通自行训练。

环境准备

1、建议使用PyCharm进行开发,社区版即可Download PyCharm: Python IDE for Professional Developers by JetBrains

2、获取项目源码并导入到PyCharm中,结构如下

预处理和相关原理讲解

1、数据准备

准备一份数据集,这个数据集质量可能不是很好,中英文标点符号混合了,同时也有很多不合理的文本,例如网页的HTML代码,我们可以简单做一个处理,把英文的标点符号,.?替换成中文的,。?,如果想要更好的数据,可以进一步清理数据,或者自定义数据集。如下:

如果存在一些别的特殊字符,也可以手动添加过滤掉。

当然我们自定义的数据中还存在一些不在预训练模型的vocab.txt中字符,我们也可以过滤掉,当然也可能动态添加到vocab.txt中,用来扩充我们的字符集。

这里说明一点:本源码新增两大特色

  • 1、支持扩充字符,这个在源码中有体现
  • 支持空格字符,训练集中存不存空号都可以,但必须保证没有两个连续的空格
2、原理说明

参考命名实体识别的BIO模式,由于我们标签都是单字,所以采用BO模式,我们可以把数据集处理成如下:

标签文件:

其中符号转换为:

复制代码
{
    "O":0,
    ",-B":1,
    "。-B":2,
    "?-B":3,
    "!-B":4,
    ...
}

遍历我们的数据集,将所有的文字标签化:

这样处理有个问题,需要首个字符不能为标签中的标点符号。

训练

处理好数据集后,就可以开始进行训练

1、开始训练

其中--add_vocab参数,为新增的字符,训练过程中会将新增的字符加入到库中,导出的模型会自动携带新增的字符

复制代码
export save_dir=./ernie_ckpt/output/
export data_dir=./data/data/
export pretrained_model=./ernie_ckpt/output/best_model/model_state.pdparams
export add_vocab=./data/vocab_other.txt

export model_name="ernie-3.0-medium-zh"
# ,1,2,3,4,5,6,7
python3 -u -m paddle.distributed.launch --gpus "0,1,2,3,4,5,6,7" run_ernie.py \
  --device gpu \
  --model_name $model_name \
  --pretrained_model $pretrained_model \
  --save_dir $save_dir \
  --epochs 300 \
  --save_epoch 10 \
  --batch_size 4 \
  --data_dir $data_dir \
  --add_vocab $add_vocab

[2022-09-14 17:17:34,309] [    INFO] - Already cached .ppnlp_home/models/ernie-3.0-medium-zh/ernie_3.0_medium_zh.pdparams
W0914 17:17:34.310540 10320 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0914 17:17:34.313140 10320 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-09-14 17:17:37.758967 INFO   ] train:train:90 - Train epoch: [1/20], batch: [0/1283], loss: 2.05675, f1_score: 0.02082, learning rate: 0.00001000, eta: 2:18:40
[2023-09-14 17:17:54.295418 INFO   ] train:train:90 - Train epoch: [1/20], batch: [100/1283], loss: 0.12979, f1_score: 0.33040, learning rate: 0.00000990, eta: 1:11:06
[2023-09-14 17:18:10.936073 INFO   ] train:train:90 - Train epoch: [1/20], batch: [200/1283], loss: 0.13771, f1_score: 0.37442, learning rate: 0.00000980, eta: 1:10:43
[2023-09-14 17:18:27.706051 INFO   ] train:train:90 - Train epoch: [1/20], batch: [300/1283], loss: 0.10602, f1_score: 0.47096, learning rate: 0.00000970, eta: 1:10:35
[2023-09-14 17:18:44.545404 INFO   ] train:train:90 - Train epoch: [1/20], batch: [400/1283], loss: 0.12836, f1_score: 0.55652, learning rate: 0.00000961, eta: 1:10:27
[2022-09-14 17:19:01.434206 INFO   ] train:train:90 - Train epoch: [1/20], batch: [500/1283], loss: 0.11024, f1_score: 0.51312, learning rate: 0.00000951, eta: 1:10:18

2、导出模型

复制代码
python3 export_ernie_model.py --model_name ernie-3.0-medium-zh --params_path ./ernie_ckpt/output/best_model/model_state.pdparams  --data_dir ./data/data/ --output_path ./inference/

3、预测

复制代码
import os

os.environ["PPNLP_HOME"] = "ppnlp_home"
from deploy.python.predict_ernie import ModelPredict

current_path = os.path.dirname(os.path.abspath(__file__))


def get_ner_result(model_dir, query_list):
    modelPredict = ModelPredict(
        model_dir=model_dir,
        model_name="ernie-3.0-medium-zh",
        device="gpu",
        batch_size=16
    )
    results = modelPredict(query_list)

    print("get predict num={}".format(len(results)))
    return results


if __name__ == "__main__":

    model_dir = "inference/"

    datalist = [
        "耶律虎古字海邻六院夷离菫觌烈之孙少颖悟重然诺"]

    results = get_ner_result(model_dir, datalist)

    for result in results:
        print("输出:", str(result))

小结

到这一步,标点符号预测到这一步就完成了,总体上讲效果还可以,如果需要更好的效果,可以更换更深更大的神经网络。

源码下载地址:基于PaddleNLP的深度学习对文本自动添加标点符号源码

相关推荐
2601_949593652 分钟前
CANN加速人脸检测推理:多尺度特征金字塔与锚框优化
人工智能
小刘的大模型笔记4 分钟前
大模型LoRA微调全实战:普通电脑落地,附避坑手册
人工智能·电脑
乾元4 分钟前
身份与访问:行为生物识别(按键习惯、移动轨迹)的 AI 建模
运维·网络·人工智能·深度学习·安全·自动化·安全架构
happyprince4 分钟前
2026年02月07日全球AI前沿动态
人工智能
啊阿狸不会拉杆4 分钟前
《机器学习导论》第 7 章-聚类
数据结构·人工智能·python·算法·机器学习·数据挖掘·聚类
Java后端的Ai之路5 分钟前
【AI大模型开发】-AI 大模型原理深度解析与 API 实战(建议收藏!!!)
人工智能·ai·科普·ai大模型·llm大模型
禁默5 分钟前
从图像预处理到目标检测:Ops-CV 助力 CV 任务在昇腾 NPU 上高效运行
人工智能·目标检测·目标跟踪·cann
pp起床8 分钟前
Gen_AI 第四课 模型评估
人工智能
zhangshuang-peta10 分钟前
人工智能代理团队在软件开发中的协同机制
人工智能·ai agent·mcp·peta
love you joyfully10 分钟前
告别“人多力量大”误区:看AI团队如何通过奖励设计实现协作韧性
人工智能·深度学习·神经网络·多智能体