Kimi和ChatGPT做古诗词阅读理解,谁更胜一筹?

前几天发过一篇Kimi整理会议的体验教程,没想到大家很感兴趣,这次再来拿Kimi做古诗词阅读理解看看,同时也对比下ChatGPT的效果。

ChatGPT是几乎家喻户晓的AI大模型,Kimi和它对比有哪些异同点呢?

首先它们都是基于对话的生成式AI大模型,ChatGPT多是基于英文语料库训练,而Kimi的开发公司moonshot本就是国内企业,会有更多的中文语料用于训练,对中文的生成可能会更加完善。

这次我们拿白居易《卖炭翁》中的名句,"可怜身上衣正单,心忧炭贱愿天寒",让Kimi和Chatgpt去分析这两句诗的关联和表达。

如果还记得高中阅读理解的参考答案,这两句诗表达的是"衣正单"和"愿天寒"形成强烈对比和矛盾,反映了底层人民的疾苦。

提示如下:

如何理解古诗卖炭翁中的两句:"可怜身上衣正单,心忧炭贱愿天寒。"前后两句有什么照应和关联。

先看Kimi的回答:

Kimi看出了这一层,指出愿天寒和衣正单形成对比,这种矛盾的心理反映了卖炭翁在生存压力下的无奈和挣扎。

接近参考答案,算是90分的回答了。

然后看chatgpt的回答:

Chatgpt虽然说出了大体思想,但并没有指出衣正单和炭贱愿天寒的对比和矛盾,还说贫困与未来期待形成对比,但两句诗中好像并没有直接表达这个意思。

离参考答案有点距离,可以算80分的回答。

从古诗文的理解能力看,Kimi在中文处理上似乎更加的游刃有余些。

相关推荐
爱的叹息4 分钟前
DeepSeek 大模型 + LlamaIndex + MySQL 数据库 + 知识文档 实现简单 RAG 系统
数据库·人工智能·mysql·langchain
PeterOne14 分钟前
Trae MCP + Obsidian 集成如何缓解开发者的时间损耗
人工智能·trae
sduwcgg44 分钟前
kaggle配置
人工智能·python·机器学习
DolphinScheduler社区1 小时前
白鲸开源与亚马逊云科技携手推动AI-Ready数据架构创新
人工智能·科技·开源·aws·白鲸开源·whalestudio
欣然~1 小时前
借助 OpenCV 和 PyTorch 库,利用卷积神经网络提取图像边缘特征
人工智能·计算机视觉
白熊1882 小时前
【计算机视觉】CV实战项目 - 基于YOLOv5的人脸检测与关键点定位系统深度解析
人工智能·yolo·计算机视觉
nenchoumi31192 小时前
VLA 论文精读(十六)FP3: A 3D Foundation Policy for Robotic Manipulation
论文阅读·人工智能·笔记·学习·vln
后端小肥肠2 小时前
文案号搞钱潜规则:日入四位数的Coze工作流我跑通了
人工智能·coze
LCHub低代码社区2 小时前
钧瓷产业原始创新的许昌共识:技术破壁·产业再造·生态重构(一)
大数据·人工智能·维格云·ai智能体·ai自动化·大禹智库·钧瓷码
-曾牛2 小时前
Spring AI 快速入门:从环境搭建到核心组件集成
java·人工智能·spring·ai·大模型·spring ai·开发环境搭建