书籍推荐|meta分析R语言实践教程-Doing Meta-Analysis with R: A Hands-On Guide

"The problems are solved, not by giving new information, but by arranging what we have known since long." -- Ludwig Wittgenstein

推荐理由

《Doing Meta-Analysis with R: A Hands-On Guide》 是由 Mathias Harrer, Pim Cuijpers, Toshi Furukawa, 和 David Ebert 所著的一本介绍如何使用R语言进行meta分析的入门书籍。该书覆盖了进行meta分析所需的基本步骤,如效应量的计算与汇总、森林图的绘制与美化、异质性的诊断、进行亚组分析、控制发表偏倚的方法、风险偏倚评估以及进行meta回归。此外,该书还包括网状meta分析*(Network Meta-Analysis,NMA)* 、多水平meta分析*("Multilevel" Meta-Analysis,MMA)* 、贝叶斯meta分析方法*(Bayesian Meta-Analysis,BMA)* 和结构方程模型 (Structural Equation Modeling,SEM) meta分析。该书为没有编程或统计背景的人提供一个易于操作的入门教程,每一章都是在前一章只是的基础上进行,逐渐增强读者使用R进行meta分析的理解和技能。

书籍地址:https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

笔者后续也会在公众号更新该书籍的教程和工具使用,有感兴趣的欢迎关注!

书籍目录及详细介绍

R语言基础与meta分析基础

  • R语言的安装、数据导入等基础知识

  • 效应大小的计算与汇总:介绍如何计算不同研究中的效应大小,并将合并成综合效应估计。

  • 森林图:森林图的绘制与美化。

  • 异质性诊断:介绍如何评估包含在meta分析中的研究之间的异质性。

  • 亚组分析与meta回归:讨论如何探索异质性的潜在来源与处理方法,包括亚组分析和meta回归的方法

森林图介绍

森林图2

漏斗图

异质性评估

亚组分析

meta回归

高级主题

高级主题括网状meta分析*(Network Meta-Analysis,NMA)* 、多水平meta分析*("Multilevel" Meta-Analysis,MMA)* 、贝叶斯meta分析方法*(Bayesian Meta-Analysis,BMA)* 和结构方程模型 (Structural Equation Modeling,SEM) meta分析

  1. Network Meta-Analysis

证据分布图

  1. Multilevel" Meta-Analysis

多水平meta

  1. Bayesian Meta-Analysis
  1. Structural Equation Modeling

有用工具

  1. Power Analysis

  2. Risk of Bias Plots

交通灯

相关推荐
Katecat996632 小时前
基于YOLO11-HAFB-1的五种羊品种分类识别系统详解
人工智能·数据挖掘
ASD123asfadxv8 小时前
汽车保险丝盒元件识别与分类:基于Faster R-CNN与ResNet101的检测方案详解
分类·r语言·汽车
Christo38 小时前
TKDE-2026《Efficient Co-Clustering via Bipartite Graph Factorization》
人工智能·算法·机器学习·数据挖掘
天桥下的卖艺者8 小时前
使用R语言编写一个生成金字塔图形的函数
开发语言·数据库·r语言
BYSJMG9 小时前
计算机毕设选题推荐:基于大数据的癌症数据分析与可视化系统
大数据·vue.js·python·数据挖掘·数据分析·课程设计
ASD123asfadxv9 小时前
蝴蝶鱼种类识别与分类_yolov10n-SPDConv改进模型实战详解
yolo·分类·数据挖掘
Faker66363aaa10 小时前
青香蕉尺寸分类与检测:从小尺寸香蕉手识别到模型优化_cascade-rcnn_hrnetv2p-w40-20e_coco
人工智能·分类·数据挖掘
Faker66363aaa10 小时前
YOLOv11-C3k2-SWC模型实现棉花质量检测与分类系统
yolo·分类·数据挖掘
zxsz_com_cn21 小时前
设备预测性维护算法分类及优劣势分析,选型指南来了
算法·分类·数据挖掘