书籍推荐|meta分析R语言实践教程-Doing Meta-Analysis with R: A Hands-On Guide

"The problems are solved, not by giving new information, but by arranging what we have known since long." -- Ludwig Wittgenstein

推荐理由

《Doing Meta-Analysis with R: A Hands-On Guide》 是由 Mathias Harrer, Pim Cuijpers, Toshi Furukawa, 和 David Ebert 所著的一本介绍如何使用R语言进行meta分析的入门书籍。该书覆盖了进行meta分析所需的基本步骤,如效应量的计算与汇总、森林图的绘制与美化、异质性的诊断、进行亚组分析、控制发表偏倚的方法、风险偏倚评估以及进行meta回归。此外,该书还包括网状meta分析*(Network Meta-Analysis,NMA)* 、多水平meta分析*("Multilevel" Meta-Analysis,MMA)* 、贝叶斯meta分析方法*(Bayesian Meta-Analysis,BMA)* 和结构方程模型 (Structural Equation Modeling,SEM) meta分析。该书为没有编程或统计背景的人提供一个易于操作的入门教程,每一章都是在前一章只是的基础上进行,逐渐增强读者使用R进行meta分析的理解和技能。

书籍地址:https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/

笔者后续也会在公众号更新该书籍的教程和工具使用,有感兴趣的欢迎关注!

书籍目录及详细介绍

R语言基础与meta分析基础

  • R语言的安装、数据导入等基础知识

  • 效应大小的计算与汇总:介绍如何计算不同研究中的效应大小,并将合并成综合效应估计。

  • 森林图:森林图的绘制与美化。

  • 异质性诊断:介绍如何评估包含在meta分析中的研究之间的异质性。

  • 亚组分析与meta回归:讨论如何探索异质性的潜在来源与处理方法,包括亚组分析和meta回归的方法

森林图介绍

森林图2

漏斗图

异质性评估

亚组分析

meta回归

高级主题

高级主题括网状meta分析*(Network Meta-Analysis,NMA)* 、多水平meta分析*("Multilevel" Meta-Analysis,MMA)* 、贝叶斯meta分析方法*(Bayesian Meta-Analysis,BMA)* 和结构方程模型 (Structural Equation Modeling,SEM) meta分析

  1. Network Meta-Analysis

证据分布图

  1. Multilevel" Meta-Analysis

多水平meta

  1. Bayesian Meta-Analysis
  1. Structural Equation Modeling

有用工具

  1. Power Analysis

  2. Risk of Bias Plots

交通灯

相关推荐
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
让学习成为一种生活方式5 小时前
R包下载太慢安装中止的解决策略-R语言003
java·数据库·r语言
武子康7 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
Q8137574607 小时前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
布说在见7 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
布说在见19 小时前
层次与网络的视觉对话:树图与力引导布局的双剑合璧
信息可视化·数据挖掘·数据分析
spssau1 天前
多分类logistic回归分析案例教程
分类·数据挖掘·数据分析·回归·回归分析·logistic回归·spssau
我就说好玩1 天前
2020年美国总统大选数据分析与模型预测
大数据·python·数据挖掘·数据分析·pandas·sklearn
Aloudata1 天前
在全域数据整合过程中,如何确保数据的一致性和准确性
大数据·数据库·人工智能·数据挖掘·数据分析
安静的_显眼包O_o1 天前
【机器学习】连续属性离散化与sklearn.preprocessing.KBinsDiscretizer
数据挖掘·数据分析