pytorch | contiguous() 函数

1. 背景

torch中一些操作会改变原数据,比如:narrow() view() expand() transpose()等操作,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。转置的tensor和原tensor的内存是共享的,即改变转置后的tensor, 原先tensor中内容也会改变,而contiguous方法就类似深拷贝,使得上面这些操作不会改变元数据

2. 示例

python 复制代码
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1)
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出:修改后的 x 会随 y 的改变而改变

修改前:

x- tensor([[-1.2076, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[-1.2076, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

修改后:

x- tensor([[11.0000, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[11.0000, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

使用 conguous方法

python 复制代码
import torch
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1).contiguous()
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出: 可以看到x并没有随y的改变而改变

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[ 1.3756, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

修改后:

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[11.0000, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

3. 总结

当调用 contiguous() 时,会强制拷贝一份 tensor,让它的布局和从头创建的一模一样,使得两个 tensor 完全没有联系,类似于深拷贝

相关推荐
乐迪信息5 分钟前
乐迪信息:船体AI烟火检测,24小时火灾自动预警
人工智能·物联网·算法·目标检测·语音识别
且去填词8 分钟前
DeepSeek :基于 AST 与 AI 的遗留系统“手术刀”式治理方案
人工智能·自动化·llm·ast·agent·策略模式·deepseek
2501_9216494910 分钟前
主流金融数据API对比:如何获取精准、及时的IPO数据
开发语言·python·金融·restful
llilian_1610 分钟前
相位差测量仪 高精度相位计相位差测量仪的应用 相位计
大数据·人工智能·功能测试·单片机
云雾J视界11 分钟前
从Boost的设计哲学到工业实践:解锁下一代AI中间件架构的密码
c++·人工智能·中间件·架构·stackoverflow·boost
bing.shao19 分钟前
AI在电商上架图片领域的应用
开发语言·人工智能·golang
执笔论英雄20 分钟前
【RL】中Token级策略梯度损失
人工智能·pytorch·深度学习
百家方案22 分钟前
“十五五”智慧文旅解决方案:以科技为核心,开启沉浸体验与高效治理新篇章
大数据·人工智能·智慧文旅·智慧旅游
●VON22 分钟前
绿色 AI:让智能计算与地球共生
人工智能·学习·安全·制造·von
鲨莎分不晴23 分钟前
注意力的本质:信息加权而已
人工智能