pytorch | contiguous() 函数

1. 背景

torch中一些操作会改变原数据,比如:narrow() view() expand() transpose()等操作,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。转置的tensor和原tensor的内存是共享的,即改变转置后的tensor, 原先tensor中内容也会改变,而contiguous方法就类似深拷贝,使得上面这些操作不会改变元数据

2. 示例

python 复制代码
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1)
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出:修改后的 x 会随 y 的改变而改变

修改前:

x- tensor([[-1.2076, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[-1.2076, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

修改后:

x- tensor([[11.0000, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[11.0000, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

使用 conguous方法

python 复制代码
import torch
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1).contiguous()
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出: 可以看到x并没有随y的改变而改变

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[ 1.3756, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

修改后:

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[11.0000, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

3. 总结

当调用 contiguous() 时,会强制拷贝一份 tensor,让它的布局和从头创建的一模一样,使得两个 tensor 完全没有联系,类似于深拷贝

相关推荐
闲云一鹤8 分钟前
UV 包管理器 - 新一代的 Python 包和环境管理神器
前端·python
reddingtons10 分钟前
Magnific AI:拒绝“马赛克”?AI 幻觉重绘流,拯救 1024px 废片
图像处理·人工智能·设计模式·新媒体运营·aigc·设计师·教育电商
JXL186011 分钟前
Convolutional Neural Networks
人工智能·深度学习·机器学习
政安晨18 分钟前
政安晨【人工智能项目随笔】Model Context Protocol(MCP)开发与资源完整指南
人工智能·mcp·模型上下文协议·mcp协议·mcp服务·ai模型上下文通信·mcp资源
GEO-optimize27 分钟前
2026北京GEO服务商评审指南:核心实力与适配指南
大数据·人工智能·机器学习·geo
cipher31 分钟前
Claude-Mem 自定义API支持:突破速率限制的解决方案
人工智能·ai编程·claude
晓131339 分钟前
第六章 【若依框架:AI】AI若依框架实战项目
人工智能·若依
EriccoShaanxi40 分钟前
单轴MEMS陀螺仪:精准导航与稳定的核心
人工智能·机器人·无人机
Eloudy41 分钟前
SuiteSparse 的 README
人工智能·算法·机器学习·hpc
guygg881 小时前
LSTM工具箱的详细说明及实现
人工智能·rnn·lstm