pytorch | contiguous() 函数

1. 背景

torch中一些操作会改变原数据,比如:narrow() view() expand() transpose()等操作,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。转置的tensor和原tensor的内存是共享的,即改变转置后的tensor, 原先tensor中内容也会改变,而contiguous方法就类似深拷贝,使得上面这些操作不会改变元数据

2. 示例

python 复制代码
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1)
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出:修改后的 x 会随 y 的改变而改变

修改前:

x- tensor([[-1.2076, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[-1.2076, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

修改后:

x- tensor([[11.0000, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[11.0000, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

使用 conguous方法

python 复制代码
import torch
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1).contiguous()
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出: 可以看到x并没有随y的改变而改变

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[ 1.3756, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

修改后:

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[11.0000, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

3. 总结

当调用 contiguous() 时,会强制拷贝一份 tensor,让它的布局和从头创建的一模一样,使得两个 tensor 完全没有联系,类似于深拷贝

相关推荐
九章云极AladdinEdu3 分钟前
GPU与NPU异构计算任务划分算法研究:基于强化学习的Transformer负载均衡实践
java·开发语言·人工智能·深度学习·测试工具·负载均衡·transformer
量子-Alex6 分钟前
【目标检测】RT-DETR
人工智能·目标检测·计算机视觉
2201_754918416 分钟前
OpenCV 图像透视变换详解
人工智能·opencv·计算机视觉
羽星_s22 分钟前
文本分类任务Qwen3-0.6B与Bert:实验见解
人工智能·bert·文本分类·ai大模型·qwen3
摸鱼仙人~24 分钟前
TensorFlow/Keras实现知识蒸馏案例
人工智能·tensorflow·keras
小白学大数据28 分钟前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
浊酒南街28 分钟前
TensorFlow之微分求导
人工智能·python·tensorflow
羽凌寒33 分钟前
曝光融合(Exposure Fusion)
图像处理·人工智能·计算机视觉
立秋678934 分钟前
用Python绘制梦幻星空
开发语言·python·pygame
lucky_lyovo41 分钟前
机器学习-特征工程
人工智能·机器学习