pytorch | contiguous() 函数

1. 背景

torch中一些操作会改变原数据,比如:narrow() view() expand() transpose()等操作,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。转置的tensor和原tensor的内存是共享的,即改变转置后的tensor, 原先tensor中内容也会改变,而contiguous方法就类似深拷贝,使得上面这些操作不会改变元数据

2. 示例

python 复制代码
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1)
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出:修改后的 x 会随 y 的改变而改变

修改前:

x- tensor([[-1.2076, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[-1.2076, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

修改后:

x- tensor([[11.0000, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[11.0000, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

使用 conguous方法

python 复制代码
import torch
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1).contiguous()
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出: 可以看到x并没有随y的改变而改变

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[ 1.3756, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

修改后:

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[11.0000, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

3. 总结

当调用 contiguous() 时,会强制拷贝一份 tensor,让它的布局和从头创建的一模一样,使得两个 tensor 完全没有联系,类似于深拷贝

相关推荐
数科云6 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区6 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南7 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu7 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现7 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_7 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z8 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
web3.08889998 小时前
微店商品详情API实用
python·json·时序数据库
知乎的哥廷根数学学派8 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor8 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc