pytorch | contiguous() 函数

1. 背景

torch中一些操作会改变原数据,比如:narrow() view() expand() transpose()等操作,在使用transpose()进行转置操作时,pytorch并不会创建新的、转置后的tensor,而是修改了tensor中的一些属性(也就是元数据),使得此时的offset和stride是与转置tensor相对应的。转置的tensor和原tensor的内存是共享的,即改变转置后的tensor, 原先tensor中内容也会改变,而contiguous方法就类似深拷贝,使得上面这些操作不会改变元数据

2. 示例

python 复制代码
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1)
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出:修改后的 x 会随 y 的改变而改变

修改前:

x- tensor([[-1.2076, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[-1.2076, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

修改后:

x- tensor([[11.0000, -0.5300],

-0.0826, -1.0144\], \[ 1.2097, -1.2360\]\]) y- tensor(\[\[11.0000, -0.0826, 1.2097\], \[-0.5300, -1.0144, -1.2360\]\])

使用 conguous方法

python 复制代码
import torch
x = torch.randn(3, 2)
y = torch.transpose(x, 0, 1).contiguous()
print("修改前:")
print("x-", x)
print("y-", y)
 
print("\n修改后:")
y[0, 0] = 11
print("x-", x)
print("y-", y)

输出: 可以看到x并没有随y的改变而改变

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[ 1.3756, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

修改后:

x- tensor([[ 1.3756, -0.1766],

0.9518, -1.7000\], \[-1.0423, -0.6077\]\]) y- tensor(\[\[11.0000, 0.9518, -1.0423\], \[-0.1766, -1.7000, -0.6077\]\])

3. 总结

当调用 contiguous() 时,会强制拷贝一份 tensor,让它的布局和从头创建的一模一样,使得两个 tensor 完全没有联系,类似于深拷贝

相关推荐
小毛驴85023 分钟前
软件设计模式-装饰器模式
python·设计模式·装饰器模式
serve the people30 分钟前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
闲人编程43 分钟前
Python的导入系统:模块查找、加载和缓存机制
java·python·缓存·加载器·codecapsule·查找器
weixin_457760001 小时前
Python 数据结构
数据结构·windows·python
0***K8921 小时前
前端机器学习
人工智能·机器学习
陈天伟教授1 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108241 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10111 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里1 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算