吴恩达机器学习笔记 三十三 发现异常事件 高斯分布

例如飞机发动机的异常检测,假设只有两个特征,新的样本和之前的样本偏离的很多,就认为可能是异常的点。

一种方法是密度估计(density estimation),计算训练样本的 x 落在某个区间的概率,当验证集的样本的概率小于一个很小的数时,认为这种情况是异常的。

高斯分布 (Guassian distribution,也叫正态分布,normal distribution,钟形分布,bell-shape distribution)

如下图,这个曲线以 μ 为中心,表示的是 p(x),σ是标准差。

几个高斯分布的例子

μ 和 σ如下图所示,其中有些统计学家会用1/m-1替换1/m, 但这不是很重要。

相关推荐
limenga1025 分钟前
TensorFlow Keras:快速搭建神经网络模型
人工智能·python·深度学习·神经网络·机器学习·tensorflow
KG_LLM图谱增强大模型2 小时前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
AKAMAI2 小时前
企业如何平衡AI创新与风险
人工智能·云原生·云计算
AA陈超2 小时前
UE5笔记:GetWorld()->SpawnActorDeferred()
c++·笔记·学习·ue5·虚幻引擎
生椰拿铁You3 小时前
openxlpy学习笔记
笔记·学习
TDengine (老段)4 小时前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据
AA陈超4 小时前
ASC学习笔记0025:移除所有属性集
c++·笔记·学习·ue5·虚幻引擎
QT 小鲜肉4 小时前
【Linux常用命令大全】在 Linux 系统下 Git + Vim编辑器常用指令完全指南(亲测有效)
linux·开发语言·c++·笔记·git·编辑器·vim
数据的世界014 小时前
Visual Studio 2026 正式发布:AI 原生 IDE 与性能革命的双向突破
ide·人工智能·visual studio