吴恩达机器学习笔记 三十三 发现异常事件 高斯分布

例如飞机发动机的异常检测,假设只有两个特征,新的样本和之前的样本偏离的很多,就认为可能是异常的点。

一种方法是密度估计(density estimation),计算训练样本的 x 落在某个区间的概率,当验证集的样本的概率小于一个很小的数时,认为这种情况是异常的。

高斯分布 (Guassian distribution,也叫正态分布,normal distribution,钟形分布,bell-shape distribution)

如下图,这个曲线以 μ 为中心,表示的是 p(x),σ是标准差。

几个高斯分布的例子

μ 和 σ如下图所示,其中有些统计学家会用1/m-1替换1/m, 但这不是很重要。

相关推荐
舒一笑1 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq2 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
自小吃多2 小时前
STC8H系列 驱动步进电机
笔记·单片机
红衣小蛇妖2 小时前
神经网络-Day45
人工智能·深度学习·神经网络
KKKlucifer2 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor3 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc
moxiaoran57534 小时前
uni-app学习笔记三十--request网络请求传参
笔记·学习·uni-app
浠寒AI5 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python
weixin_505154465 小时前
数字孪生在建设智慧城市中可以起到哪些作用或帮助?
大数据·人工智能·智慧城市·数字孪生·数据可视化
Best_Me075 小时前
深度学习模块缝合
人工智能·深度学习