吴恩达机器学习笔记 三十三 发现异常事件 高斯分布

例如飞机发动机的异常检测,假设只有两个特征,新的样本和之前的样本偏离的很多,就认为可能是异常的点。

一种方法是密度估计(density estimation),计算训练样本的 x 落在某个区间的概率,当验证集的样本的概率小于一个很小的数时,认为这种情况是异常的。

高斯分布 (Guassian distribution,也叫正态分布,normal distribution,钟形分布,bell-shape distribution)

如下图,这个曲线以 μ 为中心,表示的是 p(x),σ是标准差。

几个高斯分布的例子

μ 和 σ如下图所示,其中有些统计学家会用1/m-1替换1/m, 但这不是很重要。

相关推荐
A尘埃2 分钟前
深度学习框架:Keras
人工智能·深度学习·keras
回眸&啤酒鸭16 分钟前
【回眸】AI新鲜事(五)——2026按照自己的理想型培养自己
人工智能
AI周红伟17 分钟前
周红伟:智能体构建实操:OpenClaw + Agent Skills + Seedance + RAG 案例实操
大数据·人工智能·大模型·智能体
海兰17 分钟前
Elastic Stack 9.3.0 日志异常检测
人工智能
AI英德西牛仔29 分钟前
豆包图片导出
人工智能
NEXT0636 分钟前
拒绝“盲盒式”编程:规范驱动开发(SDD)如何重塑 AI 交付
前端·人工智能·markdown
liuzhijie-06141 小时前
【AI 使用案例】如何使用 AI 进行代码调试
人工智能
阿杰学AI1 小时前
AI核心知识105—大语言模型之 Multi-Agent Architect(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·agent·智能体·多智能体架构师
nita张1 小时前
战略定位实战:案例分享与经验总结
大数据·人工智能·python
云器科技1 小时前
AI × Lakehouse:云器Lakehouse + Datus 从SQL查询到自然语言交互,扩展数据团队的能力边界
大数据·人工智能·数据库架构·数据平台·湖仓平台