吴恩达机器学习笔记 三十三 发现异常事件 高斯分布

例如飞机发动机的异常检测,假设只有两个特征,新的样本和之前的样本偏离的很多,就认为可能是异常的点。

一种方法是密度估计(density estimation),计算训练样本的 x 落在某个区间的概率,当验证集的样本的概率小于一个很小的数时,认为这种情况是异常的。

高斯分布 (Guassian distribution,也叫正态分布,normal distribution,钟形分布,bell-shape distribution)

如下图,这个曲线以 μ 为中心,表示的是 p(x),σ是标准差。

几个高斯分布的例子

μ 和 σ如下图所示,其中有些统计学家会用1/m-1替换1/m, 但这不是很重要。

相关推荐
aircrushin6 小时前
三分钟说清楚 ReAct Agent 的技术实现
人工智能
技术狂人1687 小时前
工业大模型工程化部署实战!4 卡 L40S 高可用集群(动态资源调度 + 监控告警 + 国产化适配)
人工智能·算法·面试·职场和发展·vllm
好奇龙猫8 小时前
【人工智能学习-AI入试相关题目练习-第三次】
人工智能
wdfk_prog8 小时前
[Linux]学习笔记系列 -- hashtable
linux·笔记·学习
柳杉8 小时前
建议收藏 | 2026年AI工具封神榜:从Sora到混元3D,生产力彻底爆发
前端·人工智能·后端
狮子座明仔8 小时前
Engram:DeepSeek提出条件记忆模块,“查算分离“架构开启LLM稀疏性新维度
人工智能·深度学习·语言模型·自然语言处理·架构·记忆
阿湯哥8 小时前
AgentScope Java 集成 Spring AI Alibaba Workflow 完整指南
java·人工智能·spring
Java中文社群9 小时前
保姆级喂饭教程:什么是Skills?如何用Skills?
人工智能
2301_800256119 小时前
【人工智能引论期末复习】 第6章 深度学习4 - RNN
人工智能·rnn·深度学习