吴恩达机器学习笔记 三十三 发现异常事件 高斯分布

例如飞机发动机的异常检测,假设只有两个特征,新的样本和之前的样本偏离的很多,就认为可能是异常的点。

一种方法是密度估计(density estimation),计算训练样本的 x 落在某个区间的概率,当验证集的样本的概率小于一个很小的数时,认为这种情况是异常的。

高斯分布 (Guassian distribution,也叫正态分布,normal distribution,钟形分布,bell-shape distribution)

如下图,这个曲线以 μ 为中心,表示的是 p(x),σ是标准差。

几个高斯分布的例子

μ 和 σ如下图所示,其中有些统计学家会用1/m-1替换1/m, 但这不是很重要。

相关推荐
码云数智-大飞15 分钟前
小程序制作平台有哪些?SaaS小程序制作平台对比评测
大数据·人工智能
智者知已应修善业42 分钟前
【PAT乙级真题解惑1012数字分类】2025-3-29
c语言·c++·经验分享·笔记·算法
前路不黑暗@1 小时前
Java项目:Java脚手架项目的地图服务(十)
java·数据库·spring boot·笔记·学习·spring cloud·maven
新缸中之脑1 小时前
Arduino AI手势识别系统
人工智能
码农小韩1 小时前
AIAgent应用开发——DeepSeek分析(二)
人工智能·python·深度学习·agent·强化学习·deepseek
ctrigger1 小时前
家和万事兴
大数据·人工智能·生活
Bill Adams1 小时前
深度解析 WebMCP:让网页成为 AI 智能体的工具库
人工智能·智能体·mcp
新缸中之脑1 小时前
StrongDM:软件黑灯工厂
人工智能
冰西瓜6001 小时前
深度学习的数学原理(八)—— 过拟合与正则化
人工智能·深度学习
Christo31 小时前
windows系统配置openclaw
人工智能·机器学习