吴恩达机器学习笔记 三十三 发现异常事件 高斯分布

例如飞机发动机的异常检测,假设只有两个特征,新的样本和之前的样本偏离的很多,就认为可能是异常的点。

一种方法是密度估计(density estimation),计算训练样本的 x 落在某个区间的概率,当验证集的样本的概率小于一个很小的数时,认为这种情况是异常的。

高斯分布 (Guassian distribution,也叫正态分布,normal distribution,钟形分布,bell-shape distribution)

如下图,这个曲线以 μ 为中心,表示的是 p(x),σ是标准差。

几个高斯分布的例子

μ 和 σ如下图所示,其中有些统计学家会用1/m-1替换1/m, 但这不是很重要。

相关推荐
CICI131414132 分钟前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
ZzzZ3141592612 分钟前
【无标题】
人工智能
Hcoco_me15 分钟前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec
哈__16 分钟前
CodeLlama与昇腾NPU的实践之旅
人工智能·gitcode·sglang
GMICLOUD30 分钟前
GMI Cloud@AI周报 | MiniMax 叩响港股大门;智谱 GLM-4.7 开源
人工智能·ai资讯
0x000735 分钟前
进击的智谱 - GLM 4.7 双旦大礼
人工智能
_codemonster43 分钟前
AI大模型入门到实战系列--使用Pytorch实现transformer文本分类
人工智能·pytorch·transformer
Elastic 中国社区官方博客1 小时前
Elasticsearch:在 X-mas 吃一些更健康的东西
android·大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索
DKHZ_OfficeAI1 小时前
开启AI办公新时代:Office+WPS双平台智能助手全面赋能
人工智能
Coder_Boy_1 小时前
基于SpringAI的智能平台基座开发-(四)
java·人工智能·spring boot·langchain·springai