Leetcode 121. 买卖股票的最佳时机

心路历程:

这道题可以暴力求解,但是O ( n 2 ) (n^2) (n2)的时间复杂度会超时;也可以用贪心法去做,可以用O ( n ) (n) (n)的时间复杂度去解决。

不过这道题是一个经典的动态规划方法,动态规划方法的重点在于建模,递归函数的参数就是DP的状态,递推函数就是 s i − 1 → s i s_{i-1} \rightarrow s_i si−1→si的可能状态转移过程。

这道题的状态应该定义为:第 i i i天以及第 i i i天是否持有资金,这个很难想到;

动作的定义分为三类,分别是买入、卖出、什么也不做;

返回值定义为第 i i i天的收益。如果第k天买入(k < i),并且第 i i i天还没有卖出去,那么收益就是-prices[i]。

注意的点:

1、贪婪解法需要在每一步维护前i个元素的最小值

2、DP方法的初始化需要区分第0天是不是持有资金

解法一:动态规划

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        @cache
        def dp(i, j): # 第i天,持有j \in {0, 1}股票,最大利润
            if i == 0 and j == 0:
                return 0
            if i == 0 and j == 1:  # 这个初始状态的定义比较不好想
                return -prices[0]
            # 注意只能买卖一次
            if j == 0:
                return max(dp(i-1, 0), dp(i-1, 1) + prices[i])
            else:
                return max(dp(i-1, 1),  - prices[i])
        return dp(len(prices) - 1, 0)

解法二:贪心法

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        low, res = float('inf'), 0
        for i in range(len(prices)):
            low = min(low, prices[i])
            res = max(res, prices[i] - low)
        return res
相关推荐
瓦特what?1 小时前
关于C++的#include的超超超详细讲解
java·开发语言·数据结构·c++·算法·信息可视化·数据挖掘
楽码1 小时前
自动修复GoVet:语言实现对比
后端·算法·编程语言
杰克尼2 小时前
415. 字符串相加
算法
lifallen2 小时前
JCTools 无锁并发队列基础:ConcurrentCircularArrayQueue
java·开发语言·数据结构·算法
来自天蝎座的孙孙3 小时前
洛谷P1595讲解(加强版)+错排讲解
python·算法
GawynKing3 小时前
图论(5)最小生成树算法
算法·图论·最小生成树
试剂界的爱马仕3 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
打不了嗝 ᥬ᭄4 小时前
Linux 信号
linux·开发语言·c++·算法
张子夜 iiii4 小时前
机器学习算法系列专栏:主成分分析(PCA)降维算法(初学者)
人工智能·python·算法·机器学习
一匹电信狗4 小时前
【C++】异常详解(万字解读)
服务器·c++·算法·leetcode·小程序·stl·visual studio