文章目录
- [1. 矩阵空间](#1. 矩阵空间)
- [2. 微分方程](#2. 微分方程)
- [3. 秩为1的矩阵](#3. 秩为1的矩阵)
- [4. 图](#4. 图)
1. 矩阵空间
我们以3X3的矩阵空间 M 为例来说明相关情况。目前矩阵空间M中只关心两类计算,矩阵加法和矩阵数乘。
-
对称矩阵-子空间-有6个3X3的对称矩阵,所以为6维矩阵空间
-
上三角矩阵-子空间-有6个3X3的上三角矩阵,所以为6维矩阵空间
矩阵M的基础基有9个,表示如下1 0 0 0 0 0 0 0 0 \] ; \[ 0 1 0 0 0 0 0 0 0 \] ; \[ 0 0 1 0 0 0 0 0 0 \] ; \[ 0 0 0 1 0 0 0 0 0 \] ; (1) \\begin{bmatrix}1\&0\&0\\\\\\\\0\&0\&0\\\\\\\\0\&0\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&1\&0\\\\\\\\0\&0\&0\\\\\\\\0\&0\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&0\&1\\\\\\\\0\&0\&0\\\\\\\\0\&0\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&0\&0\\\\\\\\1\&0\&0\\\\\\\\0\&0\&0\\\\\\\\\\end{bmatrix};\\tag{1} 100000000 ; 000100000 ; 000000100 ; 010000000 ;(1) \[ 0 0 0 0 1 0 0 0 0 \] ; \[ 0 0 0 0 0 1 0 0 0 \] ; \[ 0 0 0 0 0 0 1 0 0 \] ; \[ 0 0 0 0 0 0 0 1 0 \] ; \[ 0 0 0 0 0 0 0 0 1 \] ; (2) \\begin{bmatrix}0\&0\&0\\\\\\\\0\&1\&0\\\\\\\\0\&0\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&0\&0\\\\\\\\0\&0\&1\\\\\\\\0\&0\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&0\&0\\\\\\\\0\&0\&0\\\\\\\\1\&0\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&0\&0\\\\\\\\0\&0\&0\\\\\\\\0\&1\&0\\\\\\\\\\end{bmatrix};\\begin{bmatrix}0\&0\&0\\\\\\\\0\&0\&0\\\\\\\\0\&0\&1\\\\\\\\\\end{bmatrix};\\tag{2} 000010000 ; 000000010 ; 001000000 ; 000001000 ; 000000001 ;(2)
-
假设我们有如下微分方程:
d 2 y d x 2 + y = 0 (3) \frac{\mathrm{d}^2y}{\mathrm{d}x^2}+y=0\tag{3} dx2d2y+y=0(3) -
零空间解表示如下:
y 1 = sin ( x ) ; y 2 = cos ( x ) (4) y_1=\sin(x);y_2=\cos(x)\tag{4} y1=sin(x);y2=cos(x)(4) -
通解表示如下:
y = c 1 sin ( x ) + c 2 cos ( x ) (5) y=c_1\sin(x)+c_2\cos(x)\tag{5} y=c1sin(x)+c2cos(x)(5)
以上可以用 sin ( x ) \sin(x) sin(x)和 cos ( x ) \cos(x) cos(x)当做解来表示解空间,所以微分方程的解空间为2.
3. 秩为1的矩阵
假设我们有一个秩为1的矩阵A ,表示如下:
A = [ 1 4 5 2 8 10 ] = [ 1 2 ] 2 × 1 [ 1 4 5 ] 1 × 3 (6) A=\begin{bmatrix}1&4&5\\\\2&8&10\end{bmatrix}=\begin{bmatrix}1\\\\2\end{bmatrix}{2\times1}\begin{bmatrix}1&4&5\end{bmatrix}{1\times3}\tag{6} A= 1248510 = 12 2×1[145]1×3(6)
- 所有的秩为1的矩阵均可以分解为列向量乘以行向量。
- 小结:
我们可以通过组合秩为1的矩阵来构造我们想要的秩的矩阵。
4. 图
我们知道一个图可以有节点和边组成
G r a p h = [ n o d e s , e d g e s ] (7) Graph=[nodes,edges]\tag{7} Graph=[nodes,edges](7)