Hadoop MapReduce

MapReduce 分为两个阶段,分为Map 阶段和Reduce 阶段,可以自定义map函数reduce函数

map函数 的输入是行在文件的字节偏移量 ,value是文件的一行数据

reduce函数 的输入是key 和对应key的value组 ,然后reduce函数 可以对这一组数据进行处理

再来看mapreduce是如何实现的,因为可以知道reduce阶段value是一组 的,包括mapreduce还发生了文件读取写入文件的操作,包括一些序列化

有一个文件 时,文件 在底层操作系统 是很多个数据块

map 是以数据切片 逻辑进行处理 的,所以当读取文件数据 时,会对物理文件 进行逻辑切片 ,然后一个切片 就对应一个MapTask尽量 保证切片大小等于数据块大小 ,让一个MapTask 直接本地处理加快处理速度

Map 阶段处理逻辑 ,map读入文件的每行数据 ,然后以key-value 的方式处理输出到一个分区 ,输出到哪个分区 取决于默认 的还是自定义分区处理 了,默认 是根据键的哈希值确定分区

分区 其实是先保存到一个环形缓存区 ,当环形缓存区达到一定阈值 的时候,就会把缓冲区数据落盘落盘前 会对分区内数据 进行快速排序 ,如果有多个小文件 ,会对多个小文件进行归并排序 ,合成一个大文件,然后分区和reduceTask的数量一样

reduce 阶段,reduce可会读取所有mapTask 对应分区的所有文件 ,如果有多个文件 ,也会进行归并排序 ,这样就保证了Reduce函数的输入里的value,是一个相同Key的value集合 。然后经过reduceTask函数进行数据处理,最终输出,输出文件数 也跟reduceTask的个数 相关,reduceTask的数目不能大于分区数目

相关推荐
零售ERP菜鸟33 分钟前
数字系统的新角色:从管控工具到赋能平台
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
Howie Zphile39 分钟前
奇门遁甲x全面预算 # 双轨校准实务:资本化支出与经营目标设定的奇门-财务融合方案
大数据·人工智能
babe小鑫1 小时前
大数据运维与管理专业学习数据分析的必要性
大数据·运维·学习
Hello.Reader1 小时前
Flink JobStatusChangedListener把作业状态变化 + Lineage 发到 DataHub / OpenLineage
大数据·flink
Jouham1 小时前
中小微企业AI获客痛点解析:瞬维智能如何用“自动化+精准度”破局
大数据·人工智能·自动化
Hello.Reader2 小时前
Flink External Resource Framework让作业“原生”申请 GPU/FPGA 等外部资源
大数据·fpga开发·flink
菜鸟小芯2 小时前
从“会聊天”到“能做事”:AI Agent(AI 智能体)的技术革命与落地实践
大数据·人工智能
龙山云仓2 小时前
No155:AI中国故事-对话宋应星——天工开物与AI造物:格物穷理与经世致用
大数据·人工智能·深度学习
Hello.Reader2 小时前
Flink History Server 集群停了也能看已完成作业的 Web UI 与 REST 数据
大数据·flink
赵谨言3 小时前
基于Python和ArcPy的不动产数据入库技术与运用
大数据·开发语言·经验分享·python