Hadoop MapReduce

MapReduce 分为两个阶段,分为Map 阶段和Reduce 阶段,可以自定义map函数reduce函数

map函数 的输入是行在文件的字节偏移量 ,value是文件的一行数据

reduce函数 的输入是key 和对应key的value组 ,然后reduce函数 可以对这一组数据进行处理

再来看mapreduce是如何实现的,因为可以知道reduce阶段value是一组 的,包括mapreduce还发生了文件读取写入文件的操作,包括一些序列化

有一个文件 时,文件 在底层操作系统 是很多个数据块

map 是以数据切片 逻辑进行处理 的,所以当读取文件数据 时,会对物理文件 进行逻辑切片 ,然后一个切片 就对应一个MapTask尽量 保证切片大小等于数据块大小 ,让一个MapTask 直接本地处理加快处理速度

Map 阶段处理逻辑 ,map读入文件的每行数据 ,然后以key-value 的方式处理输出到一个分区 ,输出到哪个分区 取决于默认 的还是自定义分区处理 了,默认 是根据键的哈希值确定分区

分区 其实是先保存到一个环形缓存区 ,当环形缓存区达到一定阈值 的时候,就会把缓冲区数据落盘落盘前 会对分区内数据 进行快速排序 ,如果有多个小文件 ,会对多个小文件进行归并排序 ,合成一个大文件,然后分区和reduceTask的数量一样

reduce 阶段,reduce可会读取所有mapTask 对应分区的所有文件 ,如果有多个文件 ,也会进行归并排序 ,这样就保证了Reduce函数的输入里的value,是一个相同Key的value集合 。然后经过reduceTask函数进行数据处理,最终输出,输出文件数 也跟reduceTask的个数 相关,reduceTask的数目不能大于分区数目

相关推荐
一只栖枝14 分钟前
华为 HCIE 大数据认证中 Linux 命令行的运用及价值
大数据·linux·运维·华为·华为认证·hcie·it
喂完待续5 小时前
Apache Hudi:数据湖的实时革命
大数据·数据仓库·分布式·架构·apache·数据库架构
青云交5 小时前
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵治理与出行效率提升中的应用(398)
java·大数据·flink·大数据可视化·拥堵预测·城市交通治理·实时热力图
计艺回忆路6 小时前
从Podman开始一步步构建Hadoop开发集群
hadoop
还是大剑师兰特11 小时前
Flink面试题及详细答案100道(1-20)- 基础概念与架构
大数据·flink·大剑师·flink面试题
1892280486114 小时前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
武子康15 小时前
大数据-70 Kafka 日志清理:删除、压缩及混合模式最佳实践
大数据·后端·kafka
CCF_NOI.16 小时前
解锁聚变密码:从微观世界到能源新未来
大数据·人工智能·计算机·聚变
杨荧16 小时前
基于Python的电影评论数据分析系统 Python+Django+Vue.js
大数据·前端·vue.js·python
数据智研17 小时前
【数据分享】上市公司创新韧性数据(2007-2023)
大数据·人工智能