Hadoop MapReduce

MapReduce 分为两个阶段,分为Map 阶段和Reduce 阶段,可以自定义map函数reduce函数

map函数 的输入是行在文件的字节偏移量 ,value是文件的一行数据

reduce函数 的输入是key 和对应key的value组 ,然后reduce函数 可以对这一组数据进行处理

再来看mapreduce是如何实现的,因为可以知道reduce阶段value是一组 的,包括mapreduce还发生了文件读取写入文件的操作,包括一些序列化

有一个文件 时,文件 在底层操作系统 是很多个数据块

map 是以数据切片 逻辑进行处理 的,所以当读取文件数据 时,会对物理文件 进行逻辑切片 ,然后一个切片 就对应一个MapTask尽量 保证切片大小等于数据块大小 ,让一个MapTask 直接本地处理加快处理速度

Map 阶段处理逻辑 ,map读入文件的每行数据 ,然后以key-value 的方式处理输出到一个分区 ,输出到哪个分区 取决于默认 的还是自定义分区处理 了,默认 是根据键的哈希值确定分区

分区 其实是先保存到一个环形缓存区 ,当环形缓存区达到一定阈值 的时候,就会把缓冲区数据落盘落盘前 会对分区内数据 进行快速排序 ,如果有多个小文件 ,会对多个小文件进行归并排序 ,合成一个大文件,然后分区和reduceTask的数量一样

reduce 阶段,reduce可会读取所有mapTask 对应分区的所有文件 ,如果有多个文件 ,也会进行归并排序 ,这样就保证了Reduce函数的输入里的value,是一个相同Key的value集合 。然后经过reduceTask函数进行数据处理,最终输出,输出文件数 也跟reduceTask的个数 相关,reduceTask的数目不能大于分区数目

相关推荐
xiaofan6720131 小时前
大数据与财务管理专业如何转型做金融科技?
大数据·科技·金融
kaomiao20252 小时前
空间信息与数字技术和传统GIS专业有何不同?
大数据·信息可视化·数据分析
IT研究室2 小时前
大数据毕业设计选题推荐-基于大数据的健康与生活方式数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
尺度商业2 小时前
2025服贸会“海淀之夜”,点亮“科技”与“服务”底色
大数据·人工智能·科技
eqwaak03 小时前
科技信息差(9.13)
大数据·开发语言·人工智能·华为·语言模型
C_V_Better3 小时前
Elasticsearch 创建索引别名的正确姿势
大数据·elasticsearch
在未来等你3 小时前
Kafka面试精讲 Day 16:生产者性能优化策略
大数据·分布式·面试·kafka·消息队列
王大帅の王同学4 小时前
Thinkphp6接入讯飞星火大模型Spark Lite完全免费的API
大数据·分布式·spark
fanstuck11 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
IT学长编程12 小时前
计算机毕业设计 基于大数据技术的医疗数据分析与研究 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·机器学习·数据分析·毕业设计·毕业论文·医疗数据分析