FLink学习(三)-DataStream

一、DataStream

1,支持序列化的类型有

  • 基本类型,即 String、Long、Integer、Boolean、Array
  • 复合类型:Tuples、POJOs 和 Scala case classes

Tuples

Flink 自带有 Tuple0Tuple25 类型

java 复制代码
Tuple2<String, Integer> person = Tuple2.of("Fred", 35);

// zero based index!  
String name = person.f0;
Integer age = person.f1;

POJOs

Flink 可识别为 POJO 的条件如下

  • 该类是公有且独立的(没有非静态内部类)
  • 该类有公有的无参构造函数
  • 类(及父类)中所有的所有不被 static、transient 修饰的属性要么是公有的(且不被 final 修饰),要么是包含公有的 getter 和 setter 方法,这些方法遵循 Java bean 命名规范。

DataStream API 将构建为一个 job graph,并附加到 StreamExecutionEnvironment 。当调用 env.execute() 时此 graph 就被打包并发送到 JobManager 上,后者对作业并行处理并将其子任务分发给 Task Manager 来执行。每个作业的并行子任务将在 task slot 中执行。

3,常见 Source

  • env.fromElements

通过一个一个元素组成,e.g.

java 复制代码
DataStream<Person> flintstones = env.fromElements(
                new Person("Fred", 35),
                new Person("Wilma", 35),
                new Person("Pebbles", 2));
  • env.fromCollection

直接使用集合构成

List<Person> people = new ArrayList<Person>();

people.add(new Person("Fred", 35));
people.add(new Person("Wilma", 35));
people.add(new Person("Pebbles", 2));

DataStream<Person> flintstones = env.fromCollection(people);
  • env.socketTextStream("localhost", 9999)

通过网络端口获取

  • env.readTextFile("file:///path");

通过具体文件获取

4,基本的 sink

xxxx.print()等等

在生产中,常用的 sink 包括各种数据库和几个 pub-sub 系统。

相关推荐
宝哥大数据8 小时前
Flink Joins
flink
Java 第一深情12 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
我的K840912 小时前
Flink整合Hudi及使用
linux·服务器·flink
老周聊架构1 天前
聊聊Flink:Flink中的时间语义和Watermark详解
大数据·flink
high20111 天前
【Apache Paimon】-- 5 -- Flink 向 Paimon 表写入数据
linux·flink·apache·paimon
别这么骄傲1 天前
Flink Lookup Join(维表 Join)
大数据·flink·linq
出发行进1 天前
Flink错误:一historyserver无法启动,二存在的文件会报错没有那个文件或目录
大数据·linux·hadoop·flink·虚拟机
袖清暮雨2 天前
3_Flink CDC
大数据·flink
我的K84092 天前
Flink CDC的安装配置
大数据·flink
老周聊架构3 天前
聊聊Flink:Flink的分区机制
大数据·flink