FLink学习(三)-DataStream

一、DataStream

1,支持序列化的类型有

  • 基本类型,即 String、Long、Integer、Boolean、Array
  • 复合类型:Tuples、POJOs 和 Scala case classes

Tuples

Flink 自带有 Tuple0Tuple25 类型

java 复制代码
Tuple2<String, Integer> person = Tuple2.of("Fred", 35);

// zero based index!  
String name = person.f0;
Integer age = person.f1;

POJOs

Flink 可识别为 POJO 的条件如下

  • 该类是公有且独立的(没有非静态内部类)
  • 该类有公有的无参构造函数
  • 类(及父类)中所有的所有不被 static、transient 修饰的属性要么是公有的(且不被 final 修饰),要么是包含公有的 getter 和 setter 方法,这些方法遵循 Java bean 命名规范。

DataStream API 将构建为一个 job graph,并附加到 StreamExecutionEnvironment 。当调用 env.execute() 时此 graph 就被打包并发送到 JobManager 上,后者对作业并行处理并将其子任务分发给 Task Manager 来执行。每个作业的并行子任务将在 task slot 中执行。

3,常见 Source

  • env.fromElements

通过一个一个元素组成,e.g.

java 复制代码
DataStream<Person> flintstones = env.fromElements(
                new Person("Fred", 35),
                new Person("Wilma", 35),
                new Person("Pebbles", 2));
  • env.fromCollection

直接使用集合构成

复制代码
List<Person> people = new ArrayList<Person>();

people.add(new Person("Fred", 35));
people.add(new Person("Wilma", 35));
people.add(new Person("Pebbles", 2));

DataStream<Person> flintstones = env.fromCollection(people);
  • env.socketTextStream("localhost", 9999)

通过网络端口获取

  • env.readTextFile("file:///path");

通过具体文件获取

4,基本的 sink

xxxx.print()等等

在生产中,常用的 sink 包括各种数据库和几个 pub-sub 系统。

相关推荐
Hello.Reader1 小时前
Flink 第三方序列化Kryo 注册、Protobuf/Thrift 接入与坑位避雷
大数据·flink
板凳坐着晒太阳1 小时前
Flink-Kafka 连接器的 Checkpoint 与 Offset 管理机制
flink·kafka·offset·checkpoint
武子康16 小时前
大数据-126 - Flink一文搞懂有状态计算:State Backend 工作原理与性能差异详解 核心原理与作用
大数据·后端·flink
武子康2 天前
大数据-125 - Flink 实时流计算中的动态逻辑更新:广播状态(Broadcast State)全解析
大数据·后端·flink
Hello.Reader2 天前
Flink Checkpoint 通用调优方案三种画像 + 配置模板 + 容量估算 + 巡检脚本 + 告警阈值
大数据·flink
yumgpkpm3 天前
CMP平台(类Cloudera CDP7.3)在华为鲲鹏的Aarch64信创环境中的性能表现
大数据·flink·kafka·big data·flume·cloudera
武子康3 天前
大数据-124 - Flink State:Keyed State、Operator State KeyGroups 工作原理 案例解析
大数据·后端·flink
代码匠心3 天前
从零开始学Flink:流批一体的执行模式
java·大数据·后端·flink·大数据处理
鸿儒之观4 天前
dinky提交flink任务报 java.lang.OutOfMemoryError: Direct buffer memory
大数据·flink
武子康4 天前
大数据-123 - Flink 并行度设置优先级讲解 原理、配置与最佳实践 从Kafka到HDFS的案例分析
大数据·后端·flink