机器学习实验------线性回归方法

第1关:数据载入与分析

任务描述

本关任务:编写一个能够载入线性回归相关数据的小程序。

编程要求

该实战内容中数据为一元数据,利用 pandas 读入数据文件,并为相应的数据附上名字标签,分别为Population 和 Profit。

python 复制代码
#encoding=utf8
import os
import pandas as pd

if __name__ == "__main__":
    path = os.getcwd() + '/ex1data1.txt'
    #利用pandas读入数据data,并将数据属性分别命名为'Population'和'Profit'
    #********* begin *********#
    data = pd.read_csv(path, header=None ,names=['Population','Profit'])
    #********* end *********#
    print(data.shape)

第2关:计算损失函数

编程要求

根据以上公式,编写计算损失函数computeCost(X, y, theta),最后返回cost。

  • X:一元数据矩阵,即Population数据;
  • y:目标数据,即Profit数据;
  • theta:模型参数;
  • cost:损失函数值。
python 复制代码
#encoding=utf8
import numpy as np

def computeCost(X, y, theta):
    #根据公式编写损失函数计算函数
    #********* begin *********#
    inner=np.power(((X*theta.T)-y),2)
    cost=np.sum(inner)/(2*len(X))
    cost=round(cost,10)
    #********* end *********#
    return cost

第3关:进行梯度下降得到线性模型

编程要求

根据以上公式,编写计算损失函数gradientDescent(X, y, theta, alpha, iters),最后返回theta, cost。

  • x:一元数据矩阵,即Population数据;
  • y:目标数据,即Profit数据;
  • theta:模型参数;
  • m:数据规模;
  • α: 学习率。
python 复制代码
#encoding=utf8
import numpy as np

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))

def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    
    for i in range(iters):
        error = (X * theta.T) - y
        
        for j in range(parameters):
            #********* begin *********#
            term=np.multiply(error,X[:,j])
            temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term))
            #********* end *********#
        theta = temp
        cost[i] = computeCost(X, y, theta)
        
    return theta, cost

第4关:建立完整线性回归模型

编程要求

在前三个关卡的基础上,从宏观的视角构建一个完整的线性回归模型。主要编写数据载入,损失函数,梯度下降函数三部分。

python 复制代码
#encoding=utf8

import os
import numpy as np
import pandas as pd

#载入数据并进行数据处理
path = os.getcwd() + '/ex1data1.txt'
#********* begin *********#
data=pd.read_csv(path,header=None,names=['Population','Profit'])


#********* end *********#
data.insert(0, 'Ones', 1)
cols = data.shape[1]
X = data.iloc[:,0:cols-1]
y = data.iloc[:,cols-1:cols]

#初始化相关参数
X = np.matrix(X.values)
y = np.matrix(y.values)
theta = np.matrix(np.array([0,0]))
alpha = 0.01
iters = 1000

#定义损失函数
def computeCost(X, y, theta):
    #********* begin *********#
    inner=np.power(((X*theta.T)-y),2)
    cost=np.sum(inner)/(2*len(X))
    cost=round(cost,10)

    #********* end *********#
    return cost

#定义梯度下降函数
def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    
    for i in range(iters):
        error = (X * theta.T) - y
        
        for j in range(parameters):
            #********* begin *********#
            term=np.multiply(error,X[:,j])
            temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term))

            #********* end *********#            
        theta = temp
        cost[i] = computeCost(X, y, theta)        
    return theta, cost

#根据梯度下架算法得到最终线性模型参数
g, cost = gradientDescent(X, y, theta, alpha, iters)

print("模型参数为:", g)
相关推荐
clorisqqq9 分钟前
人工智能现代方法笔记 第1章 绪论(1/2)
人工智能·笔记
kisshuan1239610 分钟前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
焦耳热科技前沿16 分钟前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
C+-C资深大佬21 分钟前
Creo 11.0 全功能解析:多体设计 + 仿真制造,机械设计效率翻倍下载安装
人工智能
浔川python社36 分钟前
【维护期间重要提醒】请勿使用浔川 AI 翻译 v6.0 翻译违规内容
人工智能
CS创新实验室1 小时前
AI 与编程
人工智能·编程·编程语言
min1811234561 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
_codemonster1 小时前
高斯卷积的可加性定理
人工智能·计算机视觉
武子康1 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
数据智研2 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析