机器学习实验------线性回归方法

第1关:数据载入与分析

任务描述

本关任务:编写一个能够载入线性回归相关数据的小程序。

编程要求

该实战内容中数据为一元数据,利用 pandas 读入数据文件,并为相应的数据附上名字标签,分别为Population 和 Profit。

python 复制代码
#encoding=utf8
import os
import pandas as pd

if __name__ == "__main__":
    path = os.getcwd() + '/ex1data1.txt'
    #利用pandas读入数据data,并将数据属性分别命名为'Population'和'Profit'
    #********* begin *********#
    data = pd.read_csv(path, header=None ,names=['Population','Profit'])
    #********* end *********#
    print(data.shape)

第2关:计算损失函数

编程要求

根据以上公式,编写计算损失函数computeCost(X, y, theta),最后返回cost。

  • X:一元数据矩阵,即Population数据;
  • y:目标数据,即Profit数据;
  • theta:模型参数;
  • cost:损失函数值。
python 复制代码
#encoding=utf8
import numpy as np

def computeCost(X, y, theta):
    #根据公式编写损失函数计算函数
    #********* begin *********#
    inner=np.power(((X*theta.T)-y),2)
    cost=np.sum(inner)/(2*len(X))
    cost=round(cost,10)
    #********* end *********#
    return cost

第3关:进行梯度下降得到线性模型

编程要求

根据以上公式,编写计算损失函数gradientDescent(X, y, theta, alpha, iters),最后返回theta, cost。

  • x:一元数据矩阵,即Population数据;
  • y:目标数据,即Profit数据;
  • theta:模型参数;
  • m:数据规模;
  • α: 学习率。
python 复制代码
#encoding=utf8
import numpy as np

def computeCost(X, y, theta):
    inner = np.power(((X * theta.T) - y), 2)
    return np.sum(inner) / (2 * len(X))

def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    
    for i in range(iters):
        error = (X * theta.T) - y
        
        for j in range(parameters):
            #********* begin *********#
            term=np.multiply(error,X[:,j])
            temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term))
            #********* end *********#
        theta = temp
        cost[i] = computeCost(X, y, theta)
        
    return theta, cost

第4关:建立完整线性回归模型

编程要求

在前三个关卡的基础上,从宏观的视角构建一个完整的线性回归模型。主要编写数据载入,损失函数,梯度下降函数三部分。

python 复制代码
#encoding=utf8

import os
import numpy as np
import pandas as pd

#载入数据并进行数据处理
path = os.getcwd() + '/ex1data1.txt'
#********* begin *********#
data=pd.read_csv(path,header=None,names=['Population','Profit'])


#********* end *********#
data.insert(0, 'Ones', 1)
cols = data.shape[1]
X = data.iloc[:,0:cols-1]
y = data.iloc[:,cols-1:cols]

#初始化相关参数
X = np.matrix(X.values)
y = np.matrix(y.values)
theta = np.matrix(np.array([0,0]))
alpha = 0.01
iters = 1000

#定义损失函数
def computeCost(X, y, theta):
    #********* begin *********#
    inner=np.power(((X*theta.T)-y),2)
    cost=np.sum(inner)/(2*len(X))
    cost=round(cost,10)

    #********* end *********#
    return cost

#定义梯度下降函数
def gradientDescent(X, y, theta, alpha, iters):
    temp = np.matrix(np.zeros(theta.shape))
    parameters = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    
    for i in range(iters):
        error = (X * theta.T) - y
        
        for j in range(parameters):
            #********* begin *********#
            term=np.multiply(error,X[:,j])
            temp[0,j]=theta[0,j]-((alpha/len(X))*np.sum(term))

            #********* end *********#            
        theta = temp
        cost[i] = computeCost(X, y, theta)        
    return theta, cost

#根据梯度下架算法得到最终线性模型参数
g, cost = gradientDescent(X, y, theta, alpha, iters)

print("模型参数为:", g)
相关推荐
视***间3 分钟前
视程空间Pandora:终端算力破晓,赋能边缘计算未
大数据·人工智能·边缘计算·ai算力·视程空间
塔能物联运维4 分钟前
物联网运维中的边缘计算任务调度优化策略
运维·人工智能·物联网·边缘计算
JAVA学习通5 分钟前
Spring AI 核心概念
java·人工智能·spring·springai
飞哥数智坊22 分钟前
“说完就走,结果自达”:这才是 AI 协同该有的样子
人工智能·ai编程
无风听海24 分钟前
神经网络之链式法则
人工智能·深度学习·神经网络
地平线开发者26 分钟前
征程 6 | 工具链如何支持 Matmul/Conv 双 int16 输入量化?
人工智能·算法·自动驾驶
Q264336502329 分钟前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
CodeJourney.43 分钟前
AI产业技术突破、生态重构与场景深耕
人工智能·重构
产业家1 小时前
Sora 后思考:从 AI 工具到 AI 平台,产业 AGI 又近了一步
人工智能·chatgpt·agi
量化交易曾小健(金融号)1 小时前
人大计算金融课程名称:《机器学习》(题库)/《大数据与机器学习》(非题库) 姜昊教授
人工智能