深度学习入门(3) - CNN

CNN

Convolutional Layer

We use a filter to slide over the image spatially (computing dot products)

Interspersed with activation function as well

What it learns?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

Problems:
  1. For large images, we need many layers to get information about the whole image

​ Solution: Downsample inside the network

  1. Feature map shrinks with each layer

    Solution: Padding : adding zeros around the input

Pooling layer

-> downsampling

Without parameters that needs to be learnt.

ex:

max pooling

Aver pooling

...

FC layer(Fully Connected)

The last layer should always be a FC layer.

Batch normalization

we need to force inputs to be nicely scaled at each layer so that we can do the optimization more easily.

Usually inserted after FC layer / Convolutional layer, before non-linearity

Pros:

make the network easier to train

robust to initialization

Cons:

behaves differently during training and testing

Architechtures (History of ImageNet Challenge)

AlexNet

Input 3 * 277 * 277

Layer filters 64 kernel 11 stride 4 pad 2

We need to pay attention to the Memory, pramas, flop size

ZFNet

larger AlexNet

VGG

Rules:

  1. All conv 3*3 stride 1 pad 1
  2. max pool 2*2 stride 2
  3. after pool double channels

Stages:

conv-conv-pool

conv-conv-pool

conv-conv-pool

conv-conv-[conv]-pool

conv-conv-[conv]-pool

GoogLeNet

Stem network: aggressively downsamples input

Inception module:

Use such local unit with different kernal size

Use 1*1 Bottleneck to reduce channel dimensions

At the end, rather than flatting to destroy the spatial information with giant parameters

GoogLeNet use average pooling: 7 * 7 * 1024 -> 1024

There is only on FClayer at the last.

找到瓶颈位置,尽可能降低需要学习的参数数量/内存占用

Auxiliary Classifiers:

To help the deep network converge (batch normalization was not invented then): Auxiliary classification outputs to inject additional gradient at lower layers

Residual Networks

We find out that, somtimes we make the net deeper but it turns out to be underfitted.

Deeper network should strictly have the capability to do whatever a shallow one can, but it's hard to learn the parameters.

So we need the residual network!

This can help learning Identity, with all the parameters to be 0.

The still imitate VGG with its sat b

ResNeXt

Adding grops improves preforamance with same computational complexity.

MobileNets

reduce cost to make it affordable on mobile devices

Transfer learning

We can pretrain the model on a dataset.

When applying it to a new dataset, just finetune/Use linear classifier on the top layers.

Froze the main body of the net.

有一定争议,不需要预训练也能在2-3x的时间达到近似的效果

相关推荐
子燕若水2 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室3 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿3 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫4 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说4 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
大千AI助手4 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记4 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元4 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术4 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端