深度学习入门(3) - CNN

CNN

Convolutional Layer

We use a filter to slide over the image spatially (computing dot products)

Interspersed with activation function as well

What it learns?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

Problems:
  1. For large images, we need many layers to get information about the whole image

​ Solution: Downsample inside the network

  1. Feature map shrinks with each layer

    Solution: Padding : adding zeros around the input

Pooling layer

-> downsampling

Without parameters that needs to be learnt.

ex:

max pooling

Aver pooling

...

FC layer(Fully Connected)

The last layer should always be a FC layer.

Batch normalization

we need to force inputs to be nicely scaled at each layer so that we can do the optimization more easily.

Usually inserted after FC layer / Convolutional layer, before non-linearity

Pros:

make the network easier to train

robust to initialization

Cons:

behaves differently during training and testing

Architechtures (History of ImageNet Challenge)

AlexNet

Input 3 * 277 * 277

Layer filters 64 kernel 11 stride 4 pad 2

We need to pay attention to the Memory, pramas, flop size

ZFNet

larger AlexNet

VGG

Rules:

  1. All conv 3*3 stride 1 pad 1
  2. max pool 2*2 stride 2
  3. after pool double channels

Stages:

conv-conv-pool

conv-conv-pool

conv-conv-pool

conv-conv-[conv]-pool

conv-conv-[conv]-pool

GoogLeNet

Stem network: aggressively downsamples input

Inception module:

Use such local unit with different kernal size

Use 1*1 Bottleneck to reduce channel dimensions

At the end, rather than flatting to destroy the spatial information with giant parameters

GoogLeNet use average pooling: 7 * 7 * 1024 -> 1024

There is only on FClayer at the last.

找到瓶颈位置,尽可能降低需要学习的参数数量/内存占用

Auxiliary Classifiers:

To help the deep network converge (batch normalization was not invented then): Auxiliary classification outputs to inject additional gradient at lower layers

Residual Networks

We find out that, somtimes we make the net deeper but it turns out to be underfitted.

Deeper network should strictly have the capability to do whatever a shallow one can, but it's hard to learn the parameters.

So we need the residual network!

This can help learning Identity, with all the parameters to be 0.

The still imitate VGG with its sat b

ResNeXt

Adding grops improves preforamance with same computational complexity.

MobileNets

reduce cost to make it affordable on mobile devices

Transfer learning

We can pretrain the model on a dataset.

When applying it to a new dataset, just finetune/Use linear classifier on the top layers.

Froze the main body of the net.

有一定争议,不需要预训练也能在2-3x的时间达到近似的效果

相关推荐
apocalypsx39 分钟前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn
leafff1231 小时前
一文了解LLM应用架构:从Prompt到Multi-Agent
人工智能·架构·prompt
无风听海1 小时前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络
艾莉丝努力练剑1 小时前
【C++:红黑树】深入理解红黑树的平衡之道:从原理、变色、旋转到完整实现代码
大数据·开发语言·c++·人工智能·红黑树
九章云极AladdinEdu2 小时前
论文分享 | BARD-GS:基于高斯泼溅的模糊感知动态场景重建
人工智能·新视角合成·动态场景重建·运动模糊处理·3d高斯泼溅·模糊感知建模·真实世界数据集
希露菲叶特格雷拉特2 小时前
PyTorch深度学习笔记(二十)(模型验证测试)
人工智能·pytorch·笔记
NewsMash2 小时前
PyTorch之父发离职长文,告别Meta
人工智能·pytorch·python
IT_陈寒2 小时前
Python 3.12新特性实测:10个让你的代码提速30%的隐藏技巧 🚀
前端·人工智能·后端
Ztop2 小时前
GPT-5.1 已确认!OpenAI下一步推理升级?对决 Gemini 3 在即
人工智能·gpt·chatgpt
qq_436962182 小时前
奥威BI:打破数据分析的桎梏,让决策更自由
人工智能·数据挖掘·数据分析