clickhouse MPPDB数据库--新特性使用示例

clickhouse 新特性:

从clickhouse 22.3至最新的版本24.3.2.23,clickhouse在快速发展中,每个版本都增加了一些新的特性,在数据写入、查询方面都有性能加速。

本文根据clickhouse blog中的clickhouse release blog中,学习并梳理了一些在实际工作中可能用到的新特性。

以下是如何基于docker,如果试用这些新性

bash 复制代码
docker run -d --name=ch -p 8123:8123 -p 9000:9000 -p 9009:9009 --ulimit nofile=262144:262144 -v D:/ch/latest/external:/external:rw -v  chlatest:/var/lib/clickhouse:rw -v D:/ch/latest/logs:/var/log/clickhouse-server:rw -v D:/ch/latest/etc/clickhouse-server:/etc/clickhouse-server:rw clickhouse/clickhouse-server:24.3.2.23

docker exec -it bash

clickhouse-client --format_csv_delimiter=','

transform函数

进行字典替换

sql 复制代码
transform(x, array_from, array_to, default)
transform(T, Array(T), Array(U), U) -> U
transform(x, array_from, array_to)

UK-house-price-dataset.csv

sql 复制代码
CREATE TABLE uk_price_paid
(
	price UInt32,
	date Date,
	postcode1 LowCardinality(String),
	postcode2 LowCardinality(String),
	type Enum8('terraced' = 1, 'semi-detached' = 2, 'detached' = 3, 'flat' = 4, 'other' = 0),
	is_new UInt8,
	duration Enum8('freehold' = 1, 'leasehold' = 2, 'unknown' = 0),
	addr1 String,
	addr2 String,
	street LowCardinality(String),
	locality LowCardinality(String),
	town LowCardinality(String),
	district LowCardinality(String),
	county LowCardinality(String)
)
ENGINE = MergeTree
ORDER BY (postcode1, postcode2, addr1, addr2);

INSERT INTO uk_price_paid
WITH
   splitByChar(' ', postcode) AS p
SELECT
	toUInt32(price_string) AS price,
	parseDateTimeBestEffortUS(time) AS date,
	p[1] AS postcode1,
	p[2] AS postcode2,
	transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,
	b = 'Y' AS is_new,
	transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county
FROM file('UK-house-price-dataset.csv','CSV','uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String'
);


SELECT transform(number, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'], NULL) AS numbers
FROM system.numbers
LIMIT 10

读取文件

可以自动识别文件的类型,推荐字段类型

sql 复制代码
SELECT * FROM (
WITH
   splitByChar(' ', postcode) AS p
SELECT
	toUInt32(price_string) AS price,
	parseDateTimeBestEffortUS(time) AS date,
	p[1] AS postcode1,
	p[2] AS postcode2,
	transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,
	b = 'Y' AS is_new,
	transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county
FROM file('UK-house-price-dataset.csv','CSV','uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String'
) SETTINGS format_csv_delimiter=','
) LIMIT 2;

自定义函数

根据需要,编写自定义函数

sql 复制代码
CREATE OR REPLACE TABLE line_changes
(
    version UInt32,
    line_change_type Enum('Add' = 1, 'Delete' = 2, 'Modify' = 3),
    line_number UInt32,
    line_content String,
    time datetime default now()
)
ENGINE = MergeTree
ORDER BY time;

INSERT INTO default.line_changes (version,line_change_type,line_number,line_content) VALUES
(1, 'Add'   , 1, 'ClickHouse provides SQL'),
(2, 'Add'   , 2, 'with improvements'),
(3, 'Add'   , 3, 'that makes it more friendly for analytical tasks.'),
(4, 'Add'   , 2, 'with many extensions'),
(5, 'Modify', 3, 'and powerful improvements'),
(6, 'Delete', 1, ''),
(7, 'Add'   , 1, 'ClickHouse provides a superset of SQL');

-- add a string (str) into an array (arr) at a specific position (pos)
CREATE OR REPLACE FUNCTION add AS (arr, pos, str) -> 
  arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos));
  
-- delete the element at a specific position (pos) from an array (arr)
CREATE OR REPLACE FUNCTION delete AS (arr, pos) -> 
  arrayConcat(arraySlice(arr, 1, pos-1), arraySlice(arr, pos+1));

-- replace the element at a specific position (pos) in an array (arr)
CREATE OR REPLACE FUNCTION modify AS (arr, pos, str) -> 
  arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos+1));

arrayFold

sql 复制代码
SELECT arrayFold((acc, v) -> (acc + v), [10, 20, 30],  0::UInt64) AS sum;


CREATE OR REPLACE VIEW text_version AS
WITH T1 AS (
  SELECT arrayZip(
    groupArray(line_change_type),
    groupArray(line_number),
    groupArray(line_content)) as line_ops
  FROM (SELECT * FROM line_changes 
        WHERE version <= {version:UInt32} ORDER BY version ASC)
)
SELECT arrayJoin(
  arrayFold((acc, v) -> 
    if(v.'change_type' = 'Add',       add(acc, v.'line_nr', v.'content'),
    if(v.'change_type' = 'Delete', delete(acc, v.'line_nr'),
    if(v.'change_type' = 'Modify', modify(acc, v.'line_nr', v.'content'), []))),
    line_ops::Array(Tuple(change_type String, line_nr UInt32, content String)),
    []::Array(String))) as lines
FROM T1;

SELECT * FROM text_version(version = 3);

Parallel window functions

窗口函数采用并行计算,性能大幅提升

sql 复制代码
SELECT
	country,
	day,
	max(tempAvg) AS temperature,
	avg(temperature) OVER (PARTITION BY country ORDER BY day ASC ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS moving_avg_temp
FROM noaa
WHERE country != ''
GROUP BY
	country,
	date AS day
ORDER BY
	country ASC,
	day ASC

FINAL

基于FINAL及enable_vertical_final,在如下引擎
ReplacingMergeTreeAggregatingMergeTree引擎中,可以快速查询到最新的数据

sql 复制代码
SELECT
    postcode1,
    formatReadableQuantity(avg(price))
FROM uk_property_offers FINAL
GROUP BY postcode1
ORDER BY avg(price) DESC
LIMIT 3;

SELECT
    postcode1,
    formatReadableQuantity(avg(price))
FROM uk_property_offers
GROUP BY postcode1
ORDER BY avg(price) DESC
LIMIT 3
SETTINGS enable_vertical_final = 1;

Variant Type

sql 复制代码
SET allow_experimental_variant_type=1, 
   use_variant_as_common_type = 1;
   
SELECT
    map('Hello', 1, 'World', 'Mark') AS x,
    toTypeName(x) AS type
FORMAT Vertical;


SELECT
    arrayJoin([1, true, 3.4, 'Mark']) AS value,
    toTypeName(value)
ini 复制代码
Row 1:
──────
x:    {'Hello':1,'World':'Mark'}
type: Map(String, Variant(String, UInt8))


   ┌─value─┬─toTypeName(value)─────────────────────┐
1. │ true  │ Variant(Bool, Float64, String, UInt8) │
2. │ true  │ Variant(Bool, Float64, String, UInt8) │
3. │ 3.4   │ Variant(Bool, Float64, String, UInt8) │
4. │ Mark  │ Variant(Bool, Float64, String, UInt8) │
   └───────┴───────────────────────────────────────┘

字符相似性函数

  • byteHammingDistance: the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming.

    • "karolin " and "kathrin" is 3.
    • "karolin " and "kerstin" is 3.
    • "kathrin " and "kerstin" is 4.
    • 0000 and 1111 is 4.
    • 2173896 and 2233796 is 3.
  • editDistance:a way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other.

  • damerauLevenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau--Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

  • jaroWinklerSimilarity: a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric

  • levenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau--Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

https://clickhouse.com/docs/en/sql-reference/functions/string-functions#dameraulevenshteindistance

sql 复制代码
CREATE TABLE domains
(
	`domain` String,
	`rank` Float64
)
ENGINE = MergeTree
ORDER BY domain;

INSERT INTO domains SELECT
	c2 AS domain,
	1 / c1 AS rank
FROM url('domains.csv', 'CSV');

SELECT
    domain,
    levenshteinDistance(domain, 'facebook.com') AS d1,
    damerauLevenshteinDistance(domain, 'facebook.com') AS d2,
    jaroSimilarity(domain, 'facebook.com') AS d3,
    jaroWinklerSimilarity(domain, 'facebook.com') AS d4
FROM domains
ORDER BY d1 ASC
LIMIT 10 
ini 复制代码
Query id: 6f499f27-8274-4787-819a-b510322bdce3

    ┌─domain────────┬─d1─┬─d2─┬─────────────────d3─┬─────────────────d4─┐
 1. │ facebook.com  │  0 │  0 │                  1 │                  1 │
 2. │ facebonk.com  │  1 │  1 │ 0.8838383838383838 │ 0.9303030303030303 │
 3. │ fabebook.com  │  1 │  1 │  0.914141414141414 │ 0.9313131313131312 │
 4. │ facabook.com  │  1 │  1 │ 0.9444444444444443 │  0.961111111111111 │
 5. │ facobook.com  │  1 │  1 │ 0.8535353535353535 │ 0.8974747474747474 │
 6. │ facebook1.com │  1 │  1 │ 0.9743589743589745 │ 0.9846153846153847 │
 7. │ faceook.com   │  1 │  1 │ 0.9722222222222221 │ 0.9833333333333333 │
 8. │ faacebook.com │  1 │  1 │ 0.9743589743589745 │ 0.9794871794871796 │
 9. │ faceboock.com │  1 │  1 │ 0.9326923076923077 │ 0.9596153846153846 │
10. │ facebool.com  │  1 │  1 │ 0.9444444444444443 │ 0.9666666666666666 │
    └───────────────┴────┴────┴────────────────────┴────────────────────┘

Vectorized distance functions

可以作为向量数据库使用,支持L2,cosineDistance,IP三种向量相似度的度量方法

https://clickhouse.com/blog/clickhouse-release-24-02

sql 复制代码
WITH 'dog' AS search_term,
(
  SELECT vector
  FROM glove
  WHERE word = search_term
  LIMIT 1
) AS target_vector
SELECT word, cosineDistance(vector, target_vector) AS score
FROM glove
WHERE lower(word) != lower(search_term)
ORDER BY score ASC
LIMIT 5;

WITH
	'dog' AS search_term,
	(
    	SELECT vector
    	FROM glove
    	WHERE word = search_term
    	LIMIT 1
	) AS target_vector
SELECT
	word,
	1 - dotProduct(vector, target_vector) AS score
FROM glove
WHERE lower(word) != lower(search_term)
ORDER BY score ASC
LIMIT 5;

Adaptive asynchronous inserts

Asynchronous inserts shift data batching from the client side to the server side: data from insert queries is inserted into a buffer first and then written to the database storage later or asynchronously respectively.

相关推荐
superman超哥39 分钟前
04 深入 Oracle 并发世界:MVCC、锁、闩锁、事务隔离与并发性能优化的探索
数据库·oracle·性能优化·dba
engchina1 小时前
Neo4j 和 Python 初学者指南:如何使用可选关系匹配优化 Cypher 查询
数据库·python·neo4j
engchina2 小时前
使用 Cypher 查询语言在 Neo4j 中查找最短路径
数据库·neo4j
尘浮生2 小时前
Java项目实战II基于Spring Boot的光影视频平台(开发文档+数据库+源码)
java·开发语言·数据库·spring boot·后端·maven·intellij-idea
威哥爱编程2 小时前
SQL Server 数据太多如何优化
数据库·sql·sqlserver
小华同学ai2 小时前
AJ-Report:一款开源且非常强大的数据可视化大屏和报表工具
数据库·信息可视化·开源
Acrelhuang2 小时前
安科瑞5G基站直流叠光监控系统-安科瑞黄安南
大数据·数据库·数据仓库·物联网
十叶知秋3 小时前
【jmeter】jmeter的线程组功能的详细介绍
数据库·jmeter·性能测试
瓜牛_gn4 小时前
mysql特性
数据库·mysql
奶糖趣多多5 小时前
Redis知识点
数据库·redis·缓存