clickhouse MPPDB数据库--新特性使用示例

clickhouse 新特性:

从clickhouse 22.3至最新的版本24.3.2.23,clickhouse在快速发展中,每个版本都增加了一些新的特性,在数据写入、查询方面都有性能加速。

本文根据clickhouse blog中的clickhouse release blog中,学习并梳理了一些在实际工作中可能用到的新特性。

以下是如何基于docker,如果试用这些新性

bash 复制代码
docker run -d --name=ch -p 8123:8123 -p 9000:9000 -p 9009:9009 --ulimit nofile=262144:262144 -v D:/ch/latest/external:/external:rw -v  chlatest:/var/lib/clickhouse:rw -v D:/ch/latest/logs:/var/log/clickhouse-server:rw -v D:/ch/latest/etc/clickhouse-server:/etc/clickhouse-server:rw clickhouse/clickhouse-server:24.3.2.23

docker exec -it bash

clickhouse-client --format_csv_delimiter=','

transform函数

进行字典替换

sql 复制代码
transform(x, array_from, array_to, default)
transform(T, Array(T), Array(U), U) -> U
transform(x, array_from, array_to)

UK-house-price-dataset.csv

sql 复制代码
CREATE TABLE uk_price_paid
(
	price UInt32,
	date Date,
	postcode1 LowCardinality(String),
	postcode2 LowCardinality(String),
	type Enum8('terraced' = 1, 'semi-detached' = 2, 'detached' = 3, 'flat' = 4, 'other' = 0),
	is_new UInt8,
	duration Enum8('freehold' = 1, 'leasehold' = 2, 'unknown' = 0),
	addr1 String,
	addr2 String,
	street LowCardinality(String),
	locality LowCardinality(String),
	town LowCardinality(String),
	district LowCardinality(String),
	county LowCardinality(String)
)
ENGINE = MergeTree
ORDER BY (postcode1, postcode2, addr1, addr2);

INSERT INTO uk_price_paid
WITH
   splitByChar(' ', postcode) AS p
SELECT
	toUInt32(price_string) AS price,
	parseDateTimeBestEffortUS(time) AS date,
	p[1] AS postcode1,
	p[2] AS postcode2,
	transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,
	b = 'Y' AS is_new,
	transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county
FROM file('UK-house-price-dataset.csv','CSV','uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String'
);


SELECT transform(number, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine'], NULL) AS numbers
FROM system.numbers
LIMIT 10

读取文件

可以自动识别文件的类型,推荐字段类型

sql 复制代码
SELECT * FROM (
WITH
   splitByChar(' ', postcode) AS p
SELECT
	toUInt32(price_string) AS price,
	parseDateTimeBestEffortUS(time) AS date,
	p[1] AS postcode1,
	p[2] AS postcode2,
	transform(a, ['T', 'S', 'D', 'F', 'O'], ['terraced', 'semi-detached', 'detached', 'flat', 'other']) AS type,
	b = 'Y' AS is_new,
	transform(c, ['F', 'L', 'U'], ['freehold', 'leasehold', 'unknown']) AS duration, addr1, addr2, street, locality, town, district, county
FROM file('UK-house-price-dataset.csv','CSV','uuid_string String, price_string String, time String, postcode String, a String, b String, c String, addr1 String, addr2 String, street String, locality String, town String, district String, county String, d String, e String'
) SETTINGS format_csv_delimiter=','
) LIMIT 2;

自定义函数

根据需要,编写自定义函数

sql 复制代码
CREATE OR REPLACE TABLE line_changes
(
    version UInt32,
    line_change_type Enum('Add' = 1, 'Delete' = 2, 'Modify' = 3),
    line_number UInt32,
    line_content String,
    time datetime default now()
)
ENGINE = MergeTree
ORDER BY time;

INSERT INTO default.line_changes (version,line_change_type,line_number,line_content) VALUES
(1, 'Add'   , 1, 'ClickHouse provides SQL'),
(2, 'Add'   , 2, 'with improvements'),
(3, 'Add'   , 3, 'that makes it more friendly for analytical tasks.'),
(4, 'Add'   , 2, 'with many extensions'),
(5, 'Modify', 3, 'and powerful improvements'),
(6, 'Delete', 1, ''),
(7, 'Add'   , 1, 'ClickHouse provides a superset of SQL');

-- add a string (str) into an array (arr) at a specific position (pos)
CREATE OR REPLACE FUNCTION add AS (arr, pos, str) -> 
  arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos));
  
-- delete the element at a specific position (pos) from an array (arr)
CREATE OR REPLACE FUNCTION delete AS (arr, pos) -> 
  arrayConcat(arraySlice(arr, 1, pos-1), arraySlice(arr, pos+1));

-- replace the element at a specific position (pos) in an array (arr)
CREATE OR REPLACE FUNCTION modify AS (arr, pos, str) -> 
  arrayConcat(arraySlice(arr, 1, pos-1), [str], arraySlice(arr, pos+1));

arrayFold

sql 复制代码
SELECT arrayFold((acc, v) -> (acc + v), [10, 20, 30],  0::UInt64) AS sum;


CREATE OR REPLACE VIEW text_version AS
WITH T1 AS (
  SELECT arrayZip(
    groupArray(line_change_type),
    groupArray(line_number),
    groupArray(line_content)) as line_ops
  FROM (SELECT * FROM line_changes 
        WHERE version <= {version:UInt32} ORDER BY version ASC)
)
SELECT arrayJoin(
  arrayFold((acc, v) -> 
    if(v.'change_type' = 'Add',       add(acc, v.'line_nr', v.'content'),
    if(v.'change_type' = 'Delete', delete(acc, v.'line_nr'),
    if(v.'change_type' = 'Modify', modify(acc, v.'line_nr', v.'content'), []))),
    line_ops::Array(Tuple(change_type String, line_nr UInt32, content String)),
    []::Array(String))) as lines
FROM T1;

SELECT * FROM text_version(version = 3);

Parallel window functions

窗口函数采用并行计算,性能大幅提升

sql 复制代码
SELECT
	country,
	day,
	max(tempAvg) AS temperature,
	avg(temperature) OVER (PARTITION BY country ORDER BY day ASC ROWS BETWEEN 5 PRECEDING AND CURRENT ROW) AS moving_avg_temp
FROM noaa
WHERE country != ''
GROUP BY
	country,
	date AS day
ORDER BY
	country ASC,
	day ASC

FINAL

基于FINAL及enable_vertical_final,在如下引擎
ReplacingMergeTreeAggregatingMergeTree引擎中,可以快速查询到最新的数据

sql 复制代码
SELECT
    postcode1,
    formatReadableQuantity(avg(price))
FROM uk_property_offers FINAL
GROUP BY postcode1
ORDER BY avg(price) DESC
LIMIT 3;

SELECT
    postcode1,
    formatReadableQuantity(avg(price))
FROM uk_property_offers
GROUP BY postcode1
ORDER BY avg(price) DESC
LIMIT 3
SETTINGS enable_vertical_final = 1;

Variant Type

sql 复制代码
SET allow_experimental_variant_type=1, 
   use_variant_as_common_type = 1;
   
SELECT
    map('Hello', 1, 'World', 'Mark') AS x,
    toTypeName(x) AS type
FORMAT Vertical;


SELECT
    arrayJoin([1, true, 3.4, 'Mark']) AS value,
    toTypeName(value)
ini 复制代码
Row 1:
──────
x:    {'Hello':1,'World':'Mark'}
type: Map(String, Variant(String, UInt8))


   ┌─value─┬─toTypeName(value)─────────────────────┐
1. │ true  │ Variant(Bool, Float64, String, UInt8) │
2. │ true  │ Variant(Bool, Float64, String, UInt8) │
3. │ 3.4   │ Variant(Bool, Float64, String, UInt8) │
4. │ Mark  │ Variant(Bool, Float64, String, UInt8) │
   └───────┴───────────────────────────────────────┘

字符相似性函数

  • byteHammingDistance: the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences. It is named after the American mathematician Richard Hamming.

    • "karolin " and "kathrin" is 3.
    • "karolin " and "kerstin" is 3.
    • "kathrin " and "kerstin" is 4.
    • 0000 and 1111 is 4.
    • 2173896 and 2233796 is 3.
  • editDistance:a way of quantifying how dissimilar two strings (e.g., words) are to one another, that is measured by counting the minimum number of operations required to transform one string into the other.

  • damerauLevenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau--Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

  • jaroWinklerSimilarity: a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric

  • levenshteinDistance: a string metric for measuring the edit distance between two sequences. Informally, the Damerau--Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

https://clickhouse.com/docs/en/sql-reference/functions/string-functions#dameraulevenshteindistance

sql 复制代码
CREATE TABLE domains
(
	`domain` String,
	`rank` Float64
)
ENGINE = MergeTree
ORDER BY domain;

INSERT INTO domains SELECT
	c2 AS domain,
	1 / c1 AS rank
FROM url('domains.csv', 'CSV');

SELECT
    domain,
    levenshteinDistance(domain, 'facebook.com') AS d1,
    damerauLevenshteinDistance(domain, 'facebook.com') AS d2,
    jaroSimilarity(domain, 'facebook.com') AS d3,
    jaroWinklerSimilarity(domain, 'facebook.com') AS d4
FROM domains
ORDER BY d1 ASC
LIMIT 10 
ini 复制代码
Query id: 6f499f27-8274-4787-819a-b510322bdce3

    ┌─domain────────┬─d1─┬─d2─┬─────────────────d3─┬─────────────────d4─┐
 1. │ facebook.com  │  0 │  0 │                  1 │                  1 │
 2. │ facebonk.com  │  1 │  1 │ 0.8838383838383838 │ 0.9303030303030303 │
 3. │ fabebook.com  │  1 │  1 │  0.914141414141414 │ 0.9313131313131312 │
 4. │ facabook.com  │  1 │  1 │ 0.9444444444444443 │  0.961111111111111 │
 5. │ facobook.com  │  1 │  1 │ 0.8535353535353535 │ 0.8974747474747474 │
 6. │ facebook1.com │  1 │  1 │ 0.9743589743589745 │ 0.9846153846153847 │
 7. │ faceook.com   │  1 │  1 │ 0.9722222222222221 │ 0.9833333333333333 │
 8. │ faacebook.com │  1 │  1 │ 0.9743589743589745 │ 0.9794871794871796 │
 9. │ faceboock.com │  1 │  1 │ 0.9326923076923077 │ 0.9596153846153846 │
10. │ facebool.com  │  1 │  1 │ 0.9444444444444443 │ 0.9666666666666666 │
    └───────────────┴────┴────┴────────────────────┴────────────────────┘

Vectorized distance functions

可以作为向量数据库使用,支持L2,cosineDistance,IP三种向量相似度的度量方法

https://clickhouse.com/blog/clickhouse-release-24-02

sql 复制代码
WITH 'dog' AS search_term,
(
  SELECT vector
  FROM glove
  WHERE word = search_term
  LIMIT 1
) AS target_vector
SELECT word, cosineDistance(vector, target_vector) AS score
FROM glove
WHERE lower(word) != lower(search_term)
ORDER BY score ASC
LIMIT 5;

WITH
	'dog' AS search_term,
	(
    	SELECT vector
    	FROM glove
    	WHERE word = search_term
    	LIMIT 1
	) AS target_vector
SELECT
	word,
	1 - dotProduct(vector, target_vector) AS score
FROM glove
WHERE lower(word) != lower(search_term)
ORDER BY score ASC
LIMIT 5;

Adaptive asynchronous inserts

Asynchronous inserts shift data batching from the client side to the server side: data from insert queries is inserted into a buffer first and then written to the database storage later or asynchronously respectively.

相关推荐
success_a31 分钟前
大故障:阿里云核心域名爆炸了
数据库·阿里云·云计算
@小红花3 小时前
MySQL数据库从0到1
数据库·mysql·oracle
[听得时光枕水眠]4 小时前
MySQL基础(三)DQL(Data Query Language,数据查询语言)
数据库·mysql·oracle
我科绝伦(Huanhuan Zhou)4 小时前
深入解析Oracle SQL调优健康检查工具(SQLHC):从原理到实战优化
数据库·sql·oracle
寒山李白7 小时前
MySQL安装与配置详细讲解
数据库·mysql·配置安装
文牧之8 小时前
PostgreSQL 的扩展pg_freespacemap
运维·数据库·postgresql
deriva8 小时前
某水表量每15分钟一报,然后某天示数清0了,重新报示值了 ,如何写sql 计算每日水量
数据库·sql
在未来等你8 小时前
互联网大厂Java求职面试:AI大模型与云原生技术的深度融合
java·云原生·kubernetes·生成式ai·向量数据库·ai大模型·面试场景
Leo.yuan9 小时前
数据库同步是什么意思?数据库架构有哪些?
大数据·数据库·oracle·数据分析·数据库架构
Kookoos9 小时前
ABP VNext 与 Neo4j:构建基于图数据库的高效关系查询
数据库·c#·.net·neo4j·abp vnext