5.1.2 PyTorch2.0中卷积函数实现详解
1、torch.nn.Conv2d
in_channels=3: 输入的通道数,对应图像的3个颜色通道。
out_channels=10: 输出的通道数,即卷积后我们想要得到的特征图的数量。
kernel_size=3: 卷积核的大小,这里使用的是3x3的卷积核。
stride=2: 卷积核移动的步长,这里步长为2,意味着卷积核每次移动2个像素。
padding=1: 在图像边缘添加的填充像素数。这通常用于保持输出尺寸,或确保卷积核可以到达图像的边缘。
源码\第二章\ 5_1_2.py
cpp
import torch
image = torch.randn(size=(5,3,128,128))
#下面是定义的卷积层例子
"""
输入维度:3
输出维度:10
卷积核大小:3
步长:2
补偿方式:维度不变补偿(指的是图像大小(宽高))
"""
conv2d = torch.nn.Conv2d(3,10,kernel_size=3,stride=2,padding=1)
image_new = conv2d(image)
print(image_new.shape)
2、池化torch.nn.AvgPool2d
pool = torch.nn.AvgPool2d (kernel_size=3,stride=2,padding=0)
创建一个AvgPool2d对象,用于对image进行平均池化。参数说明:
kernel_size=3:池化窗口的大小是3x3。
stride=2:池化窗口的步长是2,意味着池化窗口每次移动2个像素。
padding=0:不使用填充。
image_pooled = torch.nn.AdaptiveAvgPool2d (1)(image)#全局池化
AdaptiveAvgPool2d是一种特殊的池化层,它可以将任何大小的输入张量调整为指定的输出大小。这里,我们指定输出大小为(1, 1)`,这实际上是一个全局池化操作,因为无论输入张量的空间维度是多少,输出都只有一个元素。这通常用于从特征图中提取全局特征。
cpp
import torch
image =torch.full((1, 3, 5, 5), 10.0) #生成大小为(1, 3, 3, 3),元素全为3的数组
pool = torch.nn.AvgPool2d(kernel_size=3,stride=2,padding=0)
image_pooled = pool(image)
print(image_pooled.shape)
print(image_pooled)
image_pooled = torch.nn.AdaptiveAvgPool2d(1)(image)#全局池化
print(image_pooled.shape)
print(image_pooled)
5.2 实战:基于卷积的MNIST手写体分类
5.2.1数据准备
前几章是对数据进行"折叠"处理
cpp
# 数据处理
# 1. 改变输入数据尺寸, (图片数量,28,28) -> (图片数量,784) ,即图片由平面变成了直线
x_train = x_train.reshape(-1,784)
x_test = x_test.reshape(-1,784)
现在需要对数据升维,突出通道。(图片数量,28,28) -> (图片数量,1,28,28),第二维指的是图片的维度/通道,channel=1。
cpp
x_train = np.expand_dims(x_train,axis=1)
以上都是对数据进行修正,能够更好的适应不同的模型嘛!
5.2.2 模型设计
源码\第三章\5_2_2.py
cpp
import torch
import torch.nn as nn
import numpy as np
import einops.layers.torch as elt
class MnistNetword(nn.Module):
def __init__(self):
super(MnistNetword, self).__init__()
self.convs_stack = nn.Sequential(
nn.Conv2d(1,12,kernel_size=7), #第一个卷积层
nn.ReLU(),
nn.Conv2d(12,24,kernel_size=5), #第二个卷积层
nn.ReLU(),
nn.Conv2d(24,6,kernel_size=3) #第三个卷积层
)
#最终分类器层
self.logits_layer = nn.Linear(in_features=1536,out_features=10)
def forward(self,inputs):
image = inputs
x = self.convs_stack(image)
#elt.Rearrange的作用是对输入数据维度进行调整,读者可以使用torch.nn.Flatten函数完成此工作
x = elt.Rearrange("b c h w -> b (c h w)")(x)
logits = self.logits_layer(x)
return logits
model = MnistNetword()
torch.save(model,"model.pth")
5.2.3基于卷积的MNIST分类模型
没有什么特别难的,就是用了卷积处理图像,再把数据送到全连接层,除了模型设计,之后的操作(分类、训练、backward跟第三章一样)
cpp
import torch
import torch.nn as nn
import numpy as np
import einops.layers.torch as elt
#载入数据
x_train = np.load("../dataset/mnist/x_train.npy")
y_train_label = np.load("../dataset/mnist/y_train_label.npy")
x_train = np.expand_dims(x_train,axis=1)
print(x_train.shape)
class MnistNetword(nn.Module):
def __init__(self):
super(MnistNetword, self).__init__()
self.convs_stack = nn.Sequential(
nn.Conv2d(1,12,kernel_size=7),
nn.ReLU(),
nn.Conv2d(12,24,kernel_size=5),
nn.ReLU(),
nn.Conv2d(24,6,kernel_size=3)
)
self.logits_layer = nn.Linear(in_features=1536,out_features=10)
def forward(self,inputs):
image = inputs
x = self.convs_stack(image)
x = elt.Rearrange("b c h w -> b (c h w)")(x)
logits = self.logits_layer(x)
return logits
device = "cuda" if torch.cuda.is_available() else "cpu"
#注意记得需要将model发送到GPU计算
model = MnistNetword().to(device)
#model = torch.compile(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
batch_size = 128
for epoch in range(42):
train_num = len(x_train)//128
train_loss = 0.
for i in range(train_num):
start = i * batch_size
end = (i + 1) * batch_size
x_batch = torch.tensor(x_train[start:end]).to(device)
y_batch = torch.tensor(y_train_label[start:end]).to(device)
pred = model(x_batch)
loss = loss_fn(pred, y_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item() # 记录每个批次的损失值
# 计算并打印损失值
train_loss /= train_num
accuracy = (pred.argmax(1) == y_batch).type(torch.float32).sum().item() / batch_size
print("epoch:",epoch,"train_loss:", round(train_loss,2),"accuracy:",round(accuracy,2))