Kaggle:收入分类

先看一下数据的统计信息

python 复制代码
import pandas as pd   
  
# 加载数据(保留原路径,但在实际应用中建议使用相对路径或环境变量)  
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')  
  
# 查看数据信息和描述 
data.info()
 
data.head()

data.describe()    

数据是已经处理好了的,利用代码绘制热力图查看各特征间的相关性

python 复制代码
import pandas as pd  
import seaborn as sns  
import matplotlib.pyplot as plt  
  
# 加载数据(保留原路径,但在实际应用中建议使用相对路径或环境变量)  
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')  
  
# 绘制热力图  
# 选择数值列进行相关性分析  
numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns
# 计算相关性矩阵  
correlation_matrix = data[numerical_columns].corr()  
# 绘制热力图  
plt.figure(figsize=(12, 10))  
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=0.5)  
plt.title('Correlation Heatmap')  
plt.savefig('correlation_heatmap.png', bbox_inches='tight')  # 保存热力图到当前目录

Class列为分类目标,可以看到有些列和他的相关性达到了0.9以上,这里就能估计出来模型效果会很好。

决策树模型分类'Class'

python 复制代码
import pandas as pd    
from sklearn.model_selection import train_test_split    
from sklearn.tree import DecisionTreeClassifier  # 导入决策树分类器  
from sklearn.metrics import classification_report    
import matplotlib.pyplot as plt    
from sklearn.metrics import roc_curve, auc  
import numpy as np  
  
# 加载数据(假设数据保存在CSV文件中)    
data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encoding='utf-8', encoding_errors='replace')   
test_data = pd.read_csv(r"C:\Users\11794\Desktop\收入分类\testing.csv", encoding='utf-8', encoding_errors='replace')    
  
# 选择特征和目标变量    
X = data.drop(['id', 'Class'], axis=1)   
y = data['Class']  # 目标变量是'Class'列    
    
# 数据分割    
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.01, random_state=42)    
    
# 创建并训练模型    
# 使用决策树分类器  
model = DecisionTreeClassifier(max_depth=30, random_state=42)  # 修改此行  
model.fit(X_train, y_train)    
   
      
# 预测测试集并评估模型    
y_pred = model.predict(X_test)    
print(classification_report(y_test, y_pred))  # 打印分类报告  
  
# 选择test_data中的特征列    
test_X = test_data.drop(['id'], axis=1)    
# 使用训练好的模型进行预测    
test_y_pred = model.predict(test_X)

模型的准确率达到了1.0,能够完全准确分类出收入水平。

相关推荐
程序员爱钓鱼39 分钟前
Python编程实战 · 基础入门篇 | Python的缩进与代码块
后端·python
pr_note2 小时前
python|if判断语法对比
python
apocelipes4 小时前
golang unique包和字符串内部化
java·python·性能优化·golang
bmcyzs4 小时前
【展厅多媒体】触摸查询一体机实现数据可视化
经验分享·科技·信息可视化·数据挖掘·数据分析·设计规范
Geoking.5 小时前
NumPy zeros() 函数详解
python·numpy
Full Stack Developme5 小时前
java.text 包详解
java·开发语言·python
丁浩6666 小时前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家6 小时前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
Q_Q5110082856 小时前
python+uniapp基于微信小程序的旅游信息系统
spring boot·python·微信小程序·django·flask·uni-app·node.js
伏小白白白6 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习