Spark实战:词频统计

文章目录

一、Spark实战:词频统计

(一)Scala版

1、分步完成词频统计

(1)基于文本文件创建RDD

  • 执行命令:val lines = sc.textFile("/home/test.txt")

(2)按空格拆分作扁平化映射

  • 执行命令:val words = lines.flatMap(_.split(" "))

(3)将单词数组映射成二元组数组

  • 执行命令:val tuplewords = words.map((_, 1))

(4)将二元组数组按键归约

  • 执行命令:val wordcount = tuplewords.reduceByKey(_ + _)

(5)将词频统计结果按次数降序排列

  • 执行命令:val sortwordcount = wordcount.sortBy(_._2, false)

2、一步搞定词频统计

  • 执行命令:sc.textFile("/home/test.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(_ + _).sortBy(_._2, false).collect.foreach(println)

(二)Python版

1、分步完成词频统计

(1)基于文本文件创建RDD

  • 执行命令:lines = sc.textFile("/home/test.txt")

(2)按空格拆分作扁平化映射

  • 执行命令:words = lines.flatMap(lambda line : line.split(' '))

(3)将单词数组映射成二元组数组

  • 执行命令:tuplewords = words.map(lambda word : (word, 1))

(4)将二元组数组按键归约

  • 执行命令:wordcount = tuplewords.reduceByKey(lambda a, b : a + b)

(5)将词频统计结果按次数降序排列

  • 执行命令:sortwordcount = wordcount.sortBy(lambda wc : wc[1], False)

2、一步搞定词频统计

  • 执行命令
python 复制代码
for line in sc.textFile('/home/test.txt').flatMap(lambda line : line.split(' ')).map(lambda word : (word, 1)).reduceByKey(lambda a, b : a + b).sortBy(lambda tup : tup[1], False).collect():
    print(line)

二、实战总结

  • 在Spark实战中,我们通过Scala和Python两个版本分别实现了词频统计的功能。首先,我们从文本文件中创建了RDD,然后按空格拆分进行扁平化映射,接着将单词数组映射成二元组数组,之后对二元组数组进行按键归约,最后将词频统计结果按次数降序排列。在分步实现的基础上,我们还可以通过一步命令直接完成整个流程。通过这次实战,我们对Spark的基本操作有了更深入的了解,为后续的学习和实践打下了基础。
相关推荐
编程彩机7 小时前
互联网大厂Java面试:从Java SE到大数据场景的技术深度解析
java·大数据·spring boot·面试·spark·java se·互联网大厂
一刻钟.9 小时前
C#高级语法之线程与任务
开发语言·c#
weixin_307779139 小时前
C#实现两个DocumentDB实例之间同步数据
开发语言·数据库·c#·云计算
foundbug99910 小时前
基于C#的OPC DA客户端实现源码解析
开发语言·c#
Crazy Struggle11 小时前
.NET 中如何快速实现 List 集合去重?
c#·.net
ApacheSeaTunnel12 小时前
Apache SeaTunnel Zeta、Flink、Spark 怎么选?底层原理 + 实战对比一次讲透
大数据·flink·spark·开源·数据集成·seatunnel·数据同步
xb113212 小时前
C#生产者-消费者模式
开发语言·c#
今晚打老虎z12 小时前
解决SQL Server 安装运行时针对宿主机内存不足2GB的场景
sqlserver·c#
Traced back13 小时前
# C# WinForms 数据库清理系统基础知识与避坑指南
开发语言·数据库·c#
我要打打代码15 小时前
关于C#线程 任务
开发语言·数据库·c#