csv 文档向量化详细过程

读取文件

我这里使用的是随便找的一份 csv 文件,只是为了示范,没有什么实际的用处。需要注意的是内容中不要有特殊字符或者🤫之类的表情包,否则在处理的时候会报错,内容如下:

基本的文档处理参数如下:

ini 复制代码
chunk_overlap = 50
chunk_size = 250
embed_model = 'bge-large-zh-v1.5'
vs_type = 'fassi'
zh_title_enhance = False

详细解释如下:

  1. chunk_overlap = 50: chunk_overlap 是指在进行文本分块时,每个块之间的重叠量。在处理文本时,通常将文本分成多个块以便更有效地处理,而重叠量可以确保在相邻的块之间不会丢失重要的信息。在这个例子中,重叠量为 50,表示相邻块之间会有 50 个字符的重叠。
  2. chunk_size = 250chunk_size 是指每个文本块的大小。将长文本分成适当大小的块有助于更高效地处理文本数据。在这里每个文本块的大小为 250 个字符。
  3. embed_model = 'bge-large-zh-v1.5'embed_model 是指用于文本嵌入(embedding)的模型。文本嵌入是将文本数据转换成向量的过程,通常用于表示文本数据。在这里,使用了名为 'bge-large-zh-v1.5' 的嵌入模型。
  4. vs_type = 'fassi'vs_type 是向量数据库名称。
  5. zh_title_enhance = Falsezh_title_enhance 是一个布尔值,用于指示是否要增强中文标题。当设置为 True 时,表示对中文标题进行增强处理;当设置为 False 时,表示不进行增强处理。

加载自定义的 Loader 处理 csv 文件

我们这里使用的是 <class 'langchain.document_loaders.csv_loader.CSVLoader'> 来处理 csv 文件内容,详细代码如下,将每一行的内容封装成给你一个 Document 类 ,然后将所有行对应的 Document 添加到一个列表中即可完成对 csv 文件的内容处理,具体 Document 类 介绍如下:

ini 复制代码
Document(page_content=content, metadata=metadata)
  • page_content 就是每一行的内容,其实就是将当前行的列名和内容使用 ":" 进行拼接,然后将所有的列的内容用"\n"拼接而成的字符串。
  • metadata 记录了当前所在行以及 csv 文件的路径。

我这里以前两行为例列举内容如下:

css 复制代码
 [ Document(     page_content=': 0\ntitle: 加油~以及一些建议\nfile: 2023-03-31.0002\nurl: https://github.com/imClumsyPanda/langchain-ChatGLM/issues/2\ndetail: 加油,我认为你的方向是对的。\nid: 0',      metadata={'source': 'D:\\Langchain-Chatchat-torch2-240402\\knowledge_base\\samples\\content\\test_files/langchain-ChatGLM_closed.csv', 'row': 0} ),  Document(     page_content=': 1\ntitle: 当前的运行环境是什么,windows还是Linux\nfile: 2023-04-01.0003\nurl: https://github.com/imClumsyPanda/langchain-ChatGLM/issues/3\ndetail: 当前的运行环境是什么,windows还是Linux,python是什么版本?\nid: 1',      metadata={'source': 'D:\\Langchain-Chatchat-torch2-240402\\knowledge_base\\samples\\content\\test_files/langchain-ChatGLM_closed.csv', 'row': 1} ) ]
python 复制代码
def __read_file(self, csvfile: TextIOWrapper) -> List[Document]:
    docs = []

    csv_reader = csv.DictReader(csvfile, **self.csv_args)  # type: ignore
    for i, row in enumerate(csv_reader):
        try:
            source = (
                row[self.source_column]
                if self.source_column is not None
                else self.file_path
            )
        except KeyError:
            raise ValueError(
                f"Source column '{self.source_column}' not found in CSV file."
            )
        content = "\n".join(
            f"{k.strip()}: {v.strip()}"
            for k, v in row.items()
            if k not in self.metadata_columns
        )
        metadata = {"source": source, "row": i}
        for col in self.metadata_columns:
            try:
                metadata[col] = row[col]
            except KeyError:
                raise ValueError(f"Metadata column '{col}' not found in CSV file.")
        doc = Document(page_content=content, metadata=metadata)
        docs.append(doc)

    return docs

向量化

选择合适的向量化模型和向量化数据库,将得到的 docs 列表转为向量存入数据库中即可,后续即可完成基于 csv 的文档问答任务。

参考

相关推荐
charley.layabox1 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人2 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝4 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z4 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟4 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊4 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli74 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
潘达斯奈基~5 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc
倔强青铜三6 小时前
苦练Python第18天:Python异常处理锦囊
人工智能·python·面试
倔强青铜三6 小时前
苦练Python第17天:你必须掌握的Python内置函数
人工智能·python·面试