代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(2)

校准曲线图表示的是预测值和实际值的差距,作为预测模型的重要部分,目前很多函数能绘制校准曲线。

一般分为两种,一种是通过Hosmer-Lemeshow检验,把P值分为10等分,求出每等分的预测值和实际值的差距

另外一种是calibration函数重抽样绘制连续的校准图

我们既往文章《手动绘制logistic回归预测模型校准曲线》已经进行了手动绘制logistic回归预测模型校准曲线,今天继续视频来介绍外部数据的校准曲线验证和分类数据的校准曲线

R语言手动绘制logistic回归预测模型校准曲线(Calibration curve)(2)

代码

r 复制代码
library(ggplot2)
library(rms)
source("E:/r/test/ggfit.R")
#公众号:零基础说科研,公众号回复:早产数据,可以获得数据
#公众号回复:代码,可以获得我自写gg2函数
bc<-read.csv("E:/r/test/zaochan.csv",sep=',',header=TRUE)
#########
bc$race<-ifelse(bc$race=="black",1,ifelse(bc$race=="white",2,3))
bc$smoke<-ifelse(bc$smoke=="nonsmoker",0,1)
bc$race<-factor(bc$race)
bc$ht<-factor(bc$ht)
bc$ui<-factor(bc$ui)
###
set.seed(123)
tr1<- sample(nrow(bc),0.6*nrow(bc))##随机无放抽取
bc_train <- bc[tr1,]#60%数据集
bc_test<- bc[-tr1,]#40%数据集
##
fit<-glm(low ~ age + lwt + race + smoke + ptl + ht + ui + ftv,
         family = binomial("logit"),
         data = bc_train )
pr1<- predict(fit,type = c("response"))#得出预测概率
#外部数据生成概率
pr2 <- predict(fit,newdata= bc_test,type = c("response"))
#生成两个数据的结局变量
y1<-bc_train[, "low"]
y2<-bc_test[, "low"]
###
plot1<-gg2(bc_train,pr1,y1)
ggplot(plot1, aes(x=meanpred, y=meanobs)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0) + 
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  geom_point(size=3, shape=21, fill="white")+
  xlab("预测概率")+
  ylab("实际概率")
##
plot2<-gg2(bc_test,pr2,y2)
ggplot(plot2, aes(x=meanpred, y=meanobs)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0) + 
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  geom_point(size=3, shape=21, fill="white")+
  xlab("预测概率")+
  ylab("实际概率")
#########
# 假设我们想了解吸烟人群和不吸烟人群比较,模型的预测能力有什么不同,可以把原数据分成2个模型,分别做成校准曲线,然后进行比较,
# 先分成吸烟组和不吸烟组两个数据
dat0<-subset(bc,bc$smoke==0)
dat00<-dat0[,-6]
dat1<-subset(bc,bc$smoke==1)
dat11<-dat1[,-6]
##
fit0<-glm(low ~ age + lwt + race + ptl + ht + ui + ftv,
          family = binomial("logit"),
          data = dat00)
fit1<-glm(low ~ age + lwt + race + ptl + ht + ui + ftv,
          family = binomial("logit"),
          data = dat11)
##
pr0<- predict(fit0,type = c("response"))#得出预测概率
y0<-dat00[, "low"]
pr1<- predict(fit1,type = c("response"))#得出预测概率
y1<-dat11[, "low"]
###
# 做分类的时候有5个参数,前面3个是数据,概率和Y值,group = 2是固定的,
# leb = "nosmoke"是你想给这个分类变量取的名字,生成如下数据
smoke0<-gg2(dat00,pr0,y0,group = 2,leb = "nosmoke")
#接下来做吸烟组的数据
smoke1<-gg2(dat11,pr1,y1,group = 2,leb = "smoke")
#把两个数据合并最后生成绘图数据
plotdat<-rbind(smoke0,smoke1)
#生成了绘图数据后就可以绘图了,只需把plotdat放进去其他不用改,当然你想自己调整也是可以的
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro,shape=gro)) + 
  geom_line() +
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)
###美化
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro,shape=gro)) + 
  geom_line() +
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0), 
        legend.position=c(1,0))  
##我们还可以做出带可信区间的分类校准曲线
smoke0<-gg2(dat00,pr0,y0,group = 2,leb = "nosmoke",g=5)
smoke1<-gg2(dat11,pr1,y1,group = 2,leb = "smoke",g=5)
plotdat<-rbind(smoke0,smoke1)

ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se,), width=.02)+
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0),legend.position=c(1,0))
###也可以加入连线,不过我这个数据加入连线感觉不是很美观
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se,), width=.02)+
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0), 
        legend.position=c(1,0)) +
  geom_line()
相关推荐
mwq3012312 分钟前
AI的“物理学”:揭秘GPT-3背后改变一切的“缩放定律”
人工智能
DP+GISer20 分钟前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类
victory043123 分钟前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类
rengang6623 分钟前
07-逻辑回归:分析用于分类问题的逻辑回归模型及其数学原理
人工智能·算法·机器学习·分类·逻辑回归
居7然37 分钟前
京东开源王炸!JoyAgent-JDGenie如何重新定义智能体开发?
人工智能·开源·大模型·mcp
老兵发新帖41 分钟前
归一化分析3
人工智能
QYR_111 小时前
2025-2031年全球 MT 插芯市场全景分析报告:技术演进、供需格局与投资前景
人工智能·自然语言处理·机器翻译
mwq301231 小时前
从GPT-1到GPT-2的性能飞跃及其驱动因素分析
人工智能
mwq301231 小时前
GPT-2技术范式解析:无监督多任务学习的概率视角
人工智能