代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(2)

校准曲线图表示的是预测值和实际值的差距,作为预测模型的重要部分,目前很多函数能绘制校准曲线。

一般分为两种,一种是通过Hosmer-Lemeshow检验,把P值分为10等分,求出每等分的预测值和实际值的差距

另外一种是calibration函数重抽样绘制连续的校准图

我们既往文章《手动绘制logistic回归预测模型校准曲线》已经进行了手动绘制logistic回归预测模型校准曲线,今天继续视频来介绍外部数据的校准曲线验证和分类数据的校准曲线

R语言手动绘制logistic回归预测模型校准曲线(Calibration curve)(2)

代码

r 复制代码
library(ggplot2)
library(rms)
source("E:/r/test/ggfit.R")
#公众号:零基础说科研,公众号回复:早产数据,可以获得数据
#公众号回复:代码,可以获得我自写gg2函数
bc<-read.csv("E:/r/test/zaochan.csv",sep=',',header=TRUE)
#########
bc$race<-ifelse(bc$race=="black",1,ifelse(bc$race=="white",2,3))
bc$smoke<-ifelse(bc$smoke=="nonsmoker",0,1)
bc$race<-factor(bc$race)
bc$ht<-factor(bc$ht)
bc$ui<-factor(bc$ui)
###
set.seed(123)
tr1<- sample(nrow(bc),0.6*nrow(bc))##随机无放抽取
bc_train <- bc[tr1,]#60%数据集
bc_test<- bc[-tr1,]#40%数据集
##
fit<-glm(low ~ age + lwt + race + smoke + ptl + ht + ui + ftv,
         family = binomial("logit"),
         data = bc_train )
pr1<- predict(fit,type = c("response"))#得出预测概率
#外部数据生成概率
pr2 <- predict(fit,newdata= bc_test,type = c("response"))
#生成两个数据的结局变量
y1<-bc_train[, "low"]
y2<-bc_test[, "low"]
###
plot1<-gg2(bc_train,pr1,y1)
ggplot(plot1, aes(x=meanpred, y=meanobs)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0) + 
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  geom_point(size=3, shape=21, fill="white")+
  xlab("预测概率")+
  ylab("实际概率")
##
plot2<-gg2(bc_test,pr2,y2)
ggplot(plot2, aes(x=meanpred, y=meanobs)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0) + 
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  geom_point(size=3, shape=21, fill="white")+
  xlab("预测概率")+
  ylab("实际概率")
#########
# 假设我们想了解吸烟人群和不吸烟人群比较,模型的预测能力有什么不同,可以把原数据分成2个模型,分别做成校准曲线,然后进行比较,
# 先分成吸烟组和不吸烟组两个数据
dat0<-subset(bc,bc$smoke==0)
dat00<-dat0[,-6]
dat1<-subset(bc,bc$smoke==1)
dat11<-dat1[,-6]
##
fit0<-glm(low ~ age + lwt + race + ptl + ht + ui + ftv,
          family = binomial("logit"),
          data = dat00)
fit1<-glm(low ~ age + lwt + race + ptl + ht + ui + ftv,
          family = binomial("logit"),
          data = dat11)
##
pr0<- predict(fit0,type = c("response"))#得出预测概率
y0<-dat00[, "low"]
pr1<- predict(fit1,type = c("response"))#得出预测概率
y1<-dat11[, "low"]
###
# 做分类的时候有5个参数,前面3个是数据,概率和Y值,group = 2是固定的,
# leb = "nosmoke"是你想给这个分类变量取的名字,生成如下数据
smoke0<-gg2(dat00,pr0,y0,group = 2,leb = "nosmoke")
#接下来做吸烟组的数据
smoke1<-gg2(dat11,pr1,y1,group = 2,leb = "smoke")
#把两个数据合并最后生成绘图数据
plotdat<-rbind(smoke0,smoke1)
#生成了绘图数据后就可以绘图了,只需把plotdat放进去其他不用改,当然你想自己调整也是可以的
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro,shape=gro)) + 
  geom_line() +
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)
###美化
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro,shape=gro)) + 
  geom_line() +
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0), 
        legend.position=c(1,0))  
##我们还可以做出带可信区间的分类校准曲线
smoke0<-gg2(dat00,pr0,y0,group = 2,leb = "nosmoke",g=5)
smoke1<-gg2(dat11,pr1,y1,group = 2,leb = "smoke",g=5)
plotdat<-rbind(smoke0,smoke1)

ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se,), width=.02)+
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0),legend.position=c(1,0))
###也可以加入连线,不过我这个数据加入连线感觉不是很美观
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se,), width=.02)+
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0), 
        legend.position=c(1,0)) +
  geom_line()
相关推荐
HPC_fac1305206781619 分钟前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力
猎嘤一号1 小时前
个人笔记本安装CUDA并配合Pytorch使用NVIDIA GPU训练神经网络的计算以及CPUvsGPU计算时间的测试代码
人工智能·pytorch·神经网络
天润融通1 小时前
天润融通携手挚达科技:AI技术重塑客户服务体验
人工智能
Elastic 中国社区官方博客3 小时前
使用 Elastic AI Assistant for Search 和 Azure OpenAI 实现从 0 到 60 的转变
大数据·人工智能·elasticsearch·microsoft·搜索引擎·ai·azure
江_小_白4 小时前
自动驾驶之激光雷达
人工智能·机器学习·自动驾驶
yusaisai大鱼6 小时前
TensorFlow如何调用GPU?
人工智能·tensorflow
weixin_466202786 小时前
第31周:天气识别(Tensorflow实战第三周)
分类·数据挖掘·tensorflow
珠海新立电子科技有限公司8 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
IT古董8 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦8 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3