代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(2)

校准曲线图表示的是预测值和实际值的差距,作为预测模型的重要部分,目前很多函数能绘制校准曲线。

一般分为两种,一种是通过Hosmer-Lemeshow检验,把P值分为10等分,求出每等分的预测值和实际值的差距

另外一种是calibration函数重抽样绘制连续的校准图

我们既往文章《手动绘制logistic回归预测模型校准曲线》已经进行了手动绘制logistic回归预测模型校准曲线,今天继续视频来介绍外部数据的校准曲线验证和分类数据的校准曲线

R语言手动绘制logistic回归预测模型校准曲线(Calibration curve)(2)

代码

r 复制代码
library(ggplot2)
library(rms)
source("E:/r/test/ggfit.R")
#公众号:零基础说科研,公众号回复:早产数据,可以获得数据
#公众号回复:代码,可以获得我自写gg2函数
bc<-read.csv("E:/r/test/zaochan.csv",sep=',',header=TRUE)
#########
bc$race<-ifelse(bc$race=="black",1,ifelse(bc$race=="white",2,3))
bc$smoke<-ifelse(bc$smoke=="nonsmoker",0,1)
bc$race<-factor(bc$race)
bc$ht<-factor(bc$ht)
bc$ui<-factor(bc$ui)
###
set.seed(123)
tr1<- sample(nrow(bc),0.6*nrow(bc))##随机无放抽取
bc_train <- bc[tr1,]#60%数据集
bc_test<- bc[-tr1,]#40%数据集
##
fit<-glm(low ~ age + lwt + race + smoke + ptl + ht + ui + ftv,
         family = binomial("logit"),
         data = bc_train )
pr1<- predict(fit,type = c("response"))#得出预测概率
#外部数据生成概率
pr2 <- predict(fit,newdata= bc_test,type = c("response"))
#生成两个数据的结局变量
y1<-bc_train[, "low"]
y2<-bc_test[, "low"]
###
plot1<-gg2(bc_train,pr1,y1)
ggplot(plot1, aes(x=meanpred, y=meanobs)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0) + 
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  geom_point(size=3, shape=21, fill="white")+
  xlab("预测概率")+
  ylab("实际概率")
##
plot2<-gg2(bc_test,pr2,y2)
ggplot(plot2, aes(x=meanpred, y=meanobs)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0) + 
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  geom_point(size=3, shape=21, fill="white")+
  xlab("预测概率")+
  ylab("实际概率")
#########
# 假设我们想了解吸烟人群和不吸烟人群比较,模型的预测能力有什么不同,可以把原数据分成2个模型,分别做成校准曲线,然后进行比较,
# 先分成吸烟组和不吸烟组两个数据
dat0<-subset(bc,bc$smoke==0)
dat00<-dat0[,-6]
dat1<-subset(bc,bc$smoke==1)
dat11<-dat1[,-6]
##
fit0<-glm(low ~ age + lwt + race + ptl + ht + ui + ftv,
          family = binomial("logit"),
          data = dat00)
fit1<-glm(low ~ age + lwt + race + ptl + ht + ui + ftv,
          family = binomial("logit"),
          data = dat11)
##
pr0<- predict(fit0,type = c("response"))#得出预测概率
y0<-dat00[, "low"]
pr1<- predict(fit1,type = c("response"))#得出预测概率
y1<-dat11[, "low"]
###
# 做分类的时候有5个参数,前面3个是数据,概率和Y值,group = 2是固定的,
# leb = "nosmoke"是你想给这个分类变量取的名字,生成如下数据
smoke0<-gg2(dat00,pr0,y0,group = 2,leb = "nosmoke")
#接下来做吸烟组的数据
smoke1<-gg2(dat11,pr1,y1,group = 2,leb = "smoke")
#把两个数据合并最后生成绘图数据
plotdat<-rbind(smoke0,smoke1)
#生成了绘图数据后就可以绘图了,只需把plotdat放进去其他不用改,当然你想自己调整也是可以的
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro,shape=gro)) + 
  geom_line() +
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)
###美化
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro,shape=gro)) + 
  geom_line() +
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0), 
        legend.position=c(1,0))  
##我们还可以做出带可信区间的分类校准曲线
smoke0<-gg2(dat00,pr0,y0,group = 2,leb = "nosmoke",g=5)
smoke1<-gg2(dat11,pr1,y1,group = 2,leb = "smoke",g=5)
plotdat<-rbind(smoke0,smoke1)

ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se,), width=.02)+
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0),legend.position=c(1,0))
###也可以加入连线,不过我这个数据加入连线感觉不是很美观
ggplot(plotdat, aes(x=meanpred, y=meanobs, color=gro,fill=gro)) + 
  geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se,), width=.02)+
  geom_point(size=4)+
  annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+
  expand_limits(x = 0, y = 0)+
  scale_x_continuous(expand = c(0, 0)) + 
  scale_y_continuous(expand = c(0, 0))+
  xlab("predicted probability")+
  ylab("actual probability")+
  theme_bw()+
  theme(panel.grid.major = element_blank(),panel.grid.minor = element_blank())+
  theme(legend.justification=c(1,0), 
        legend.position=c(1,0)) +
  geom_line()
相关推荐
好开心啊没烦恼21 分钟前
Python 数据分析:DataFrame,生成,用字典创建 DataFrame ,键值对数量不一样怎么办?
开发语言·python·数据挖掘·数据分析
AIbase202427 分钟前
国内MCP服务平台推荐!aibase.cn上线MCP服务器集合平台
运维·服务器·人工智能
喜欢吃豆1 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
星融元asterfusion1 小时前
基于路径质量的AI负载均衡异常路径检测与恢复策略
人工智能·负载均衡·异常路径
zskj_zhyl1 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
创小匠1 小时前
创客匠人视角下创始人 IP 打造与知识变现的底层逻辑重构
人工智能·tcp/ip·重构
xiangduanjava2 小时前
关于安装Ollama大语言模型本地部署工具
人工智能·语言模型·自然语言处理
zzywxc7872 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
超龄超能程序猿2 小时前
(1)机器学习小白入门 YOLOv:从概念到实践
人工智能·机器学习