Python可视化之Matplotlib

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


前言

1、解决坐标轴刻度负号乱码

plt.rcParams['axes.unicode_minus']=False

2、解决中文乱码问题

# 以下方式二选一
plt.rcParams['font.sans-serif']=['Simhei']
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] 

3、图形展现形式

在jupyter notebook中有2种图形展现形式

%matplotlib notebook:运行这句命令会在notebook中启动交互式图形

%matplotlib inline:运行这句命令会在notebook中启动静态图形

如果没有运行该命令,默认展示静态图形

%matplotlib notebook
%matplotlib inline

一、图形绘制

1.折线图plot

  • 展现变量的趋势变化

  • 调用方式:plt.plot(x,y,ls='-',lw=w,label='plot figure')

  • 参数:
    x:x轴的数值
    y:y轴的数值
    ls:折现图的线条风格(linestyle)
    lw:折现图的线条宽度(lineweight)
    label:标记图形内容的标签文本
    color:图形颜色

    x=np.linspace(0.05,20,200)
    y=np.sin(x)

    fig = plt.figure()#创建一个图形(画板)
    plt.plot(x,y,ls='--',lw=2,label='sin(x)',color='r')#调用画图函数画图(类似于在画板上贴画纸进行绘画)
    plt.legend() #legend将标签显示出来
    plt.show()
    fig.savefig('test.png')

2.散点图plot&scatter

  • plt.plot()

    x=np.linspace(0,10,30)
    y=np.sin(x)

    plt.plot(x,y,marker='o',color='c')
    plt.show()

  • plt.scatter()比plt.plot()更加灵活,比如可以单独空值每个散点与数据匹配,也可以让每个散点具有不同的属性
    函数功能:寻找变量之间关系
    调用方式plt.scatter(x,y,c='b',label='scatter,figure')
    x:x轴数值
    y:y轴数值
    c:散点标记颜色
    label:标签文本

    x=np.random.randn(100)
    y=np.random.randn(100)
    plt.scatter(x,y,c='c',label='散点图')
    plt.show()

x=np.random.randn(100)
y=np.random.randn(100)
colors=np.random.randn(100)
size=np.random.randint(20,500,100)
plt.scatter(x,y,c=colors,s=size,alpha=0.3,cmap='hsv')
plt.colorbar()  #显示颜色条
plt.show()

3.柱状图plt.bar&条形图plt.barh

函数功能:在x轴上绘制定性数据的分布特征,调用方式:plt.bar(x,y),与之相对应的是条形图

参数

  • x:在X轴上的定性数据类别

  • y:每种定性数据类别数量

  • align:柱体对齐方式

  • color:柱体颜色

  • tick_label:刻度标签值

  • alpha:柱体透明度

  • hatch:柱体填充样式

    x=[i for i in range(6)]
    y=np.random.randint(45,100,6)
    z=('a','b','c','d','e','f')
    plt.ylabel('数据')
    plt.bar(x,y,align='center',color='c',tick_label=z,hatch='///')
    plt.show()


4.直方图plt.hist&堆积直方图

函数功能:在X轴绘制定量数据的分布特征

参数说明

x:在X轴上绘制箱体的定量数据输入值

bins:用于确定柱体的个数或柱体边缘范围,除了最后一个柱体作用都为闭区间,其他柱体为左闭右开区间

color:柱体颜色

histype:柱体类型

  • bar:传统的条形直方图,如果是多个数据给出并排排列的条形图

  • step:生成默认的线图填补

  • stepfilled:生成默认的线图填充
    label:图例内容
    rwidth:柱体宽度

    x=np.random.normal(loc=10000,scale=3000,size=1000)
    bins=range(0,20000,500)

    plt.hist(x,bins=bins,histtype='bar',color='c',alpha=0.6)
    plt.xlabel('test')
    plt.ylabel('数据')
    plt.show()

堆积直方图和直方图相比,多添加2个参数

x:参数X需要对应两个数据对象,可以用列表装载

stacked:true即两个直方图堆积,false表示两个直方图并列

label:因为展示两类数据,所有标签需额外设置

x0=np.random.normal(loc=10000,scale=3000,size=1000)
x1=np.random.normal(loc=7000,scale=3000,size=1000)
bins=range(0,20000,500)
x=(x0,x1)
plt.hist(x,bins=bins,histtype='bar',label=['x0','x1'],stacked=True,alpha=0.6)
plt.xlabel('test')
plt.ylabel('数据')
plt.legend(loc='upper right')
plt.show()

当stacked=False时:

5.饼图plt.pie

主要参数

x:定性数据的不同类别的百分比

explode:饼片边缘偏离半径的百分比(如果制作分裂式饼图,添加该参数即可)

labels:标记每份饼片的文本标签内容

autopct:饼片文本标签内容对应的数值百分比样式

startangle:从X轴起始位置开始,第一个饼片逆时针旋转的角度

shadow:是否绘制饼片的阴影

colors:饼片的颜色

其他参数:

pctdistance:每个饼片中心与开始之间的比率,默认值为0.6

labeldistance:绘制饼图标签的径向问题距离,默认1.1

percent='0.1','0.15','0.3','0.2','0.2','0.05'
explode=0.1,0.1,0.1,0.1,0.1,0.5  #如果突出某部分,可把对应值修改
autopacts="%.2f%%"
startangle=45
types='优','良','中','一般','次','差'
colors=['r','g','b','c','y','y']
plt.pie(x=percent,explode=explode,labels=types,autopct=autopacts,startangle=startangle,colors=colors)
plt.show()

不传explode参数时

6.单个、多个箱线图boxplot

箱体由第一四分位、中位数(第二四分位)和第三四分位数组成,箱须末端之外为离群值

参数:

x:输入数据

whis:四分位距的倍数,用来确定箱须,包括数据范围大小

widths:设置箱体宽度

sym:离群值的标记样式

labels:绘制每一个数据集的刻度标签

patch_artist:是否给箱体添加颜色

notch:如果为True,则箱体由凹痕

  • 单个箱线图

    x=np.random.randn(1000)
    plt.boxplot(x=x,whis=1.5,widths=0.3,sym='o',labels=['箱体图'],notch=False)
    plt.grid(axis='y',ls=':',lw=1,color='grey',alpha=0.4)
    plt.show()

  • 多个箱线图
    数据集参数X需传入多个数据集对象
    标签参数labels列表要包含多个标签字符串

二、绘图风格设置

1.图片保存及查看

x=np.linspace(0.05,20,200)
y=np.sin(x)

fig = plt.figure()#创建一个图形(画板)
plt.plot(x,y,ls='--',lw=2,label='sin(x)',color='r')#调用画图函数画图(类似于在画板上贴画纸进行绘画)
plt.legend()  #legend将标签显示出来
plt.show()
fig.savefig('test.png')

from IPython.display import Image
Image('test.png')

2.设置坐标轴上下限

plt.xlim:设置X轴范围

plt.ylim:设置y轴范围

x=np.linspace(0.05,20,200)
y=np.sin(x)

fig = plt.figure()#创建一个图形(画板)
plt.plot(x,y,ls='--',lw=2,label='sin(x)',color='r')#调用画图函数画图(类似于在画板上贴画纸进行绘画)
plt.legend()  #legend将标签显示出来
plt.xlim(0.1,20)
plt.ylim(-2,2)
plt.show()

3.axis获取或设置某些轴的便捷方法

  • 使用方法一:plt.axis(xmin,xmax,ymin,ymax)

    xmin:x轴最小取值范围

    xmax:x轴最大取值范围

    ymin:y轴最小取值范围

    ymax:y轴最大取值范围

  • 使用方法二:plt.axis(str)

    'on':打开轴线和标签

    'off':关闭轴线和标签。等于设置相等的缩放比例,改变轴限制

    'scaled':设置相等的缩放比例,改变绘图狂尺寸

    'tight':设置限制大小足以显示所有数据

    'auto':自动缩放(带数据的填充框)

4.轴标签xlabel(),ylabel()

xlabel()函数功能:设置X轴标签文本

调用方式:plt.xlabel(string)

string:标签文本内容

fontsize:字体大小

平移性:上面的函数功能,调用签名和参数说明同样可以平移到函数ylabel上

5.文本标签图例legend()

函数功能:标识不同图形的文本标签图例

调用方式:plt.legend(loc='lower left')

主要参数:

  • loc:图例在图中的地理位置
    upper right(右上角)、upper left(左上角)、upper center(中间靠上)
    lower left(左下角)、lower right(右下角)、lower center(中间靠下)
    center(中间)、center right(中间靠右)、center left(中间靠左)
  • title:图例标签内容标题参数
  • shadow:线框阴影,True或False
  • fancybox:线框圆角处理参数,True或False

6.设置轴刻度和刻度标签

通过plt.xticks()和plt.yticks()函数给x轴和y轴设定刻度,同时通过这2给函数中的label参数来给这些刻度贴上标签

7.网格线设置grid()

函数功能:绘制刻度线的网格线

调用方式:plt.grid(linestyle=':',color='')

8.参考线axhline()

函数功能:绘制平行于x轴的水平参考线,与之对应的方法为plt.axvline()

调用方式:plt.axhline(y=0,c='r',ls=':',lw='')

y:水平参考线的出发点

c:参考线的线调颜色

ls:参考线的线条风格

lw:参考线的线条宽度

9.参考区域axvspan()

函数功能:绘制垂直于x轴的参考区域,与之相应的函数为axhspan()

调用方式:plt.axvspan(xmin=1.0,xmax=2,facecolor='y',alpha=0.3)

xmin:参考区域起始位置

xmax:参考区域终止位置

facecolor:参考区域填充颜色

alpha:参考区域填充颜色的透明度

10.指向性注释annotate()

函数功能:添加图形内容细节的指向型注释文本

调用方式:plt.annotate(string,xy=(,),xytext=(,),color='b',arrowprops=dict(arrowstyle='->',color='b')

string:图形内容的注释文本

xy:被注释图形内容的位置坐标

xytext:注释文本的位置坐标

color:注释文本的字体颜色

arrowprops:指示被注释内容的箭头的字典属性:

  • arrowstyle:'-','->','-[','|-|','-|','<-','<->','<|-','<|-|>',fancy,simple,wedge(注释文本字体粗细)

  • color:颜色

    plt.annotate('测试说明',xy=(np.pi/2,1),xytext=(2.5,1),weight='bold',
    color='r',arrowprops=dict(arrowstyle='->',color='c'))

11.text()图形内容细节的无指向注释文本

调用方式:plt.text(x,y,string,weight='bold',color='b')

x:注释文本位置横坐标

y:注释文本位置纵坐标

string:文本内容

weight:字体大小

color:字体颜色

plt.text(2,0.8,'sin(x)曲线',fontsize='12',color='c')

12.title()添加图形内容标题

调用方式plt.title(string)

string:标题文本

loc:center/left/right

fontdict:可以用字典存储,包含以下参数:

  • family:字体类别

  • size:字体大小

  • color:字体颜色

  • style:字体风格

    plt.title('y=sin(x)',color='r',loc='center',fontsize=13)

三、绘图进阶

1.子图plt.subplot

subplot(C,R,P):划分C行P列,从最左上角向右数起,序号P依次增加,直到换一行,序号页是从左向右增加

x=np.linspace(-2*np.pi,2*np.pi,200)
y1=np.sin(x)
y2=np.cos(x)
y3=x
y4=x**2

plt.subplot(221)
plt.plot(x,y1,label='sin(x)')

plt.subplot(222)
plt.plot(x,y2,label='cos(x)')

plt.subplot(223)
plt.plot(x,y3,label='x')

plt.subplot(224)
plt.plot(x,y4,label='x**2')

plt.show()



2.子图plt.subplots

plt.subplots()其实会返回两个对象,一个是figure画布实例,一个是坐标轴实例axes

  • figure:可以看作一个图形实例,用来包括坐标轴,图形,文字标签等

  • axes:表示一个坐标轴实例,是一个带有刻度和标签的矩阵

  • 先有了figure、axes,就可以使用ax.plot进行绘图了
    因为ax[0]表示第一个子图的实例,ax[1]表示第二个子图实例,所有可以通过ax[0]回到第一个子图绘图

    fig,ax=plt.subplots(2,1) # 把fig想象成一块画板,ax想象成两张画纸
    x=np.linspace(-2np.pi,2np.pi,200)
    y_01=np.sin(x)
    y_02=x2
    ax[0].plot(x,y_01,label="sin(x)")
    ax[0].legend()
    ax[0].set_title("图一")
    ax[1].plot(x,y_02,label="x
    2")
    ax[1].legend()
    ax[1].set_title("图二")
    #如果在画完两幅子图之后,在这个时候想再往图一添加折线图y=x,可以直接通过实例ax[0].plot()来画:
    ax[0].plot(x,x,color="r",ls="--",alpha=0.3)
    plt.show()

3.plt.figure

语法:plt.figure(num, figsize, dpi, facecolor, edgecolor, frameon)

参数

  • num:整数或字符串,可选,默认值:无
    如果未提供,将创建新图形和图形编号。图形对象将此数字保存在"数字"中
    如果提供了num,将在该编号的图形中绘图;如果num是一个字符串,该字符串作为图标题。

  • figsize:整数元组,可选,默认值:无;[宽度,高度](英寸);如果未提供,则默认为[6.4,4.8]

  • dpi:整数,可选,默认值:无;这个数字的分辨率。如果未提供,则默认为100

  • facecolor:背景颜色。如果未提供,则默认为"w"。

  • edgecolor:边框颜色。如果未提供,则默认为"w"。

  • frameon:布尔型,可选,默认值:True。如果为False,则禁止绘制图框。

    fig_01=plt.figure(1,figsize=[3,3]) #建立"画布1"
    ax_01=plt.axes()
    fig_02=plt.figure(2,figsize=[2,2]) #建立"画布2"
    ax_02=plt.axes()
    plt.show()

4.plt.axes

plt.axes用来创建一个新的全窗口轴:

语法:plt.axes([left, bottom, width, height]...)

以左下角为原点,右上角为1,设置轴域的[左坐标,底坐标,宽度,高度]

  • 上面的轴域取值范围是左下角(原点)为0,右上角为1。

  • 左坐标和底坐标两个参数对应的就是------该坐标轴的原点位置,为该图形宽度和高度比例。

  • 宽度和高度的参数就是------该坐标轴原点往外扩展,宽度和高度为图形的比例长度。

    x=np.linspace(-2np.pi,2np.pi,200)
    y=np.sin(x)

    fig=plt.figure(1,facecolor="gray") #建立"画布1",设为灰色
    ax_1=plt.axes([0,0,0.4,0.4],facecolor="w") #轴域(画纸)颜色设置成白色
    ax_1.plot(x,y,ls="-.",color="r")
    ax_2=plt.axes([0.4,0.4,0.6,0.6],facecolor="b") #轴域(画纸)颜色设成绿色
    ax_2.plot(x,y,ls="-",color="c")
    plt.show()

5.其他建立figure、axes方法

1)通过plt.subplots

x=np.linspace(0,10,1000)
y=np.sin(x)
fig,((ax_01,ax_02),(ax_03,ax_04))=plt.subplots(2,2) # 通过plt.subplots()返回"画板"和"画纸"
ax_01.plot(x,y)
plt.show()

2)通过plt.add_subplot

fig = plt.figure() # 先创建"画板"
ax_01 = fig.add_subplot(221) # 通过"画板"来调用"画纸"
ax_01.plot(x,y)
ax_02 = fig.add_subplot(222)
ax_03 = fig.add_subplot(223) 
ax_04 = fig.add_subplot(224)

plt.show()

6.面向对象绘图

1)折线图ax.plot

x=np.linspace(-2*np.pi,2*np.pi,200)
y=np.sin(x)
fig = plt.figure()
ax = plt.axes()
ax.plot(x,y,ls='--',color='c',label='test')
ax.legend()
plt.show()

2)散点图ax.scatter

fig = plt.figure()
ax = plt.axes()

x=np.linspace(0.05,20,500)
y=np.random.randint(1,100,500) 
# ax.scatter(x,y,label="scatter figure")
# ax.legend()
plt.scatter(x,y,label="scatter figure")
plt.legend()
plt.show()

3)柱状图ax.bar

fig = plt.figure()
ax = plt.axes()

x=[i for i in range(1,6)] 
y= np.random.randint(45,100,5) 
z=("a","b","c","d","e") 
ax.set_ylabel("text") 
ax.grid(linestyle="-.",color="r",axis="y",alpha=0.15) 
ax.bar(x,y,align="center",color="c",tick_label=z,hatch="|")
plt.show()

4)plt和ax部分区别

1、绝大多数plt函数都可以直接转换成ax方法,比如plt.plot()-->ax.plot()、plt.legend()-->ax.legend()等。

2、在设置坐标轴上下限、坐标轴标题和图形标题方面,会稍有不同:

  • 设置坐标轴标题:
    plt.xlabel()-->ax.set_xlabel()
    plt.ylabel()-->ax.set_ylabel()
  • 设置坐标轴上下限:
    plt.xlim()-->ax.set_xlim()
    plt.ylim()-->ax.set_ylim()
  • 设置图形标题:
    plt.title()-->ax.set_title()
    3、使用面向对象的方式绘制气泡图,不能设置colorbar,不加colorbar()就不会报错
相关推荐
Amo Xiang5 分钟前
Django 2024全栈开发指南(一):框架简介、环境搭建与项目结构
python·django
Mr_Xuhhh8 分钟前
递归搜索与回溯算法
c语言·开发语言·c++·算法·github
文军的烹饪实验室8 分钟前
ValueError: Circular reference detected
开发语言·前端·javascript
Amo Xiang12 分钟前
Django 2024全栈开发指南(二):Django项目配置详解
python·django
B20080116刘实13 分钟前
CTF攻防世界小白刷题自学笔记13
开发语言·笔记·web安全·网络安全·php
这个男人是小帅1 小时前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
Qter_Sean1 小时前
自己动手写Qt Creator插件
开发语言·qt
何曾参静谧1 小时前
「QT」文件类 之 QIODevice 输入输出设备类
开发语言·qt
爱吃生蚝的于勒2 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
zqzgng2 小时前
Matplotlib库中show()函数的用法
matplotlib