PSO-SVM,基于PSO粒子群算法优化SVM支持向量机回归预测(多输入单输出)-附代码

PSO-SVM是一种结合了粒子群优化(Particle Swarm Optimization, PSO)算法和支持向量机(Support Vector Machine, SVM)的方法,用于回归预测问题。下面我将解释PSO-SVM的原理:

1、支持向量机(SVM)

  • SVM是一种监督学习算法,用于分类和回归分析。在回归问题中,SVM试图找到一个函数,可以将输入数据映射到一个高维空间中,从而实现回归预测。其目标是找到一个最优的超平面,使得这个超平面与训练数据之间的间隔尽可能大,并且在间隔边界内部没有训练数据点。

2、粒子群优化(PSO)

  • PSO是一种启发式优化算法,受到鸟群觅食行为的启发。在PSO中,候选解被看作是搜索空间中的粒子,这些粒子根据自身和邻居的历史最优解来更新其位置和速度,以寻找全局最优解。

3、PSO-SVM原理

  • PSO-SVM将PSO算法和SVM算法相结合,以优化SVM的参数和模型。具体而言,PSO用于搜索SVM中的参数,如核函数的参数和惩罚参数等,以提高SVM的性能和泛化能力。在PSO-SVM中,每个粒子代表SVM的一个候选解(一组参数),粒子的位置表示参数的取值,粒子的速度用于更新参数值。PSO的目标函数通常是SVM的模型性能指标,例如预测误差或者回归问题中的均方误差。粒子根据目标函数的评价结果来调整自身的位置和速度,以寻找最优的参数组合,从而使SVM的性能达到最佳。

4、算法步骤

  • 初始化一群粒子,每个粒子代表一组SVM的参数。
  • 计算每个粒子的适应度(SVM的性能指标)。
  • 根据适应度更新粒子的速度和位置。
  • 重复上述步骤,直到达到停止条件(如达到最大迭代次数或者粒子的收敛)。
  • 返回具有最佳适应度的粒子所代表的参数作为最终的SVM模型参数。

结果

代码获取方式

Matlab 复制代码
https://mbd.pub/o/bread/mbd-ZZ6Ulp9r
相关推荐
松涛和鸣2 小时前
14、C 语言进阶:函数指针、typedef、二级指针、const 指针
c语言·开发语言·算法·排序算法·学习方法
yagamiraito_4 小时前
757. 设置交集大小至少为2 (leetcode每日一题)
算法·leetcode·go
星释4 小时前
Rust 练习册 57:阿特巴什密码与字符映射技术
服务器·算法·rust
无敌最俊朗@4 小时前
力扣hot100-141.环形链表
算法·leetcode·链表
WWZZ20257 小时前
快速上手大模型:深度学习10(卷积神经网络2、模型训练实践、批量归一化)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
sali-tec8 小时前
C# 基于halcon的视觉工作流-章62 点云采样
开发语言·图像处理·人工智能·算法·计算机视觉
fashion 道格8 小时前
用 C 语言玩转归并排序:递归实现的深度解析
数据结构·算法·排序算法
九年义务漏网鲨鱼9 小时前
蓝桥杯算法——状态压缩DP
算法·职场和发展·蓝桥杯
CappuccinoRose9 小时前
MATLAB学习文档(二十八)
开发语言·学习·算法·matlab
Freedom_my9 小时前
插入排序算法
数据结构·算法·排序算法