关于DeepSpeed训练设置的详细说明

在使用DeepSpeed进行训练时,配置和初始化步骤是至关重要的。以下是关于DeepSpeed训练设置的详细说明:

参数解析

DeepSpeed使用argparse库为DeepSpeed运行时提供命令行配置。开发者可以通过调用deepspeed.add_config_arguments()函数将自己的应用参数解析器中添加DeepSpeed内置的参数。这样就可以在启动脚本时传递有关DeepSpeed的配置信息。例如:

python 复制代码
parser = argparse.ArgumentParser(description='My training script.')
parser.add_argument('--local_rank', type=int, default=-1, help='local rank passed from distributed launcher')

# 添加DeepSpeed配置参数
parser = deepspeed.add_config_arguments(parser)
cmd_args = parser.parse_args()

DeepSpeed添加的参数包括:

  1. --deepspeed:布尔标志,用于启用DeepSpeed
  2. --deepspeed_config <json file path>:指定一个JSON配置文件的路径,用于配置DeepSpeed运行时。

训练初始化

所有使用DeepSpeed的训练流程均始于deepspeed.initialize()函数。该函数会自动初始化分布式后端,如果尚未初始化的话。

python 复制代码
model_engine, optimizer, _, _ = deepspeed.initialize(
    args=cmd_args,
    model=net,
    model_parameters=net.parameters()
)

deepspeed.initialize()函数接收一系列参数来初始化DeepSpeed引擎:

  • args: 包含local_rankdeepspeed_config字段的对象,如果传入了config参数,则args不是必需的。
  • model: 必需参数,未经任何封装前的原始nn.module类实例。
  • optimizer: 可选参数,用户定义的优化器对象或返回优化器对象的可调用函数,这将覆盖DeepSpeed JSON配置文件中定义的优化器。
  • model_parameters: 可选参数,一个包含待优化参数的迭代器,通常为模型参数列表或字典。
  • training_data: 可选参数,类型为torch.utils.data.Dataset的训练数据集。
  • lr_scheduler: 可选参数,学习率调度器对象或返回调度器对象的可调用函数,该调度器需要有get_lr(), step(), state_dict(), 和 load_state_dict()等方法。
  • distributed_port: 可选参数,主机(rank 0)用于分布式训练通信的可用端口。
  • mpu: 可选参数,一个实现模型并行相关接口的模型并行单元对象。
  • dist_init_required: 可选参数,如果设为None,当需要时会自动初始化torch分布式;否则,用户可通过布尔值控制是否初始化。
  • collate_fn: 可选参数,用于将样本列表合并成mini-batch的函数,适用于从map-style数据集中批量加载数据。
  • config: 可选参数,可以直接传入DeepSpeed配置文件的路径或字典,替代从命令行通过--deepspeed_config传入的方式。
  • config_params: 可选参数,与config相同,保留以兼容旧版本。

函数返回一个包含引擎、优化器、训练数据加载器和学习率调度器的元组。

分布式初始化

为了满足某些特定场景的需求(比如模型并行、流水线并行或者特殊的数据加载器场景),可以在调用deepspeed.initialize()之前单独初始化分布式后端,这时可以使用deepspeed.init_distributed()函数:

python 复制代码
deepspeed.init_distributed(
    dist_backend=None,
    auto_mpi_discovery=True,
    distributed_port=29500,
    verbose=True,
    timeout=datetime.timedelta(seconds=1800),
    init_method=None,
    dist_init_required=None,
    config=None,
    rank=-1,
    world_size=-1
)

此函数允许用户根据需求选择torch分布式后端,设置通信端口、日志详细程度、超时时间以及其他与初始化相关的参数,以便在不同的并行化方案中正确初始化分布式环境。

相关推荐
小沈熬夜秃头中୧⍤⃝8 分钟前
【贪心算法】No.1---贪心算法(1)
算法·贪心算法
木向40 分钟前
leetcode92:反转链表||
数据结构·c++·算法·leetcode·链表
阿阿越42 分钟前
算法每日练 -- 双指针篇(持续更新中)
数据结构·c++·算法
skaiuijing1 小时前
Sparrow系列拓展篇:对调度层进行抽象并引入IPC机制信号量
c语言·算法·操作系统·调度算法·操作系统内核
Star Patrick1 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康2 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
pianmian17 小时前
python数据结构基础(7)
数据结构·算法
好奇龙猫9 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_202410 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸10 小时前
链表的归并排序
数据结构·算法·链表