数据分析综合实战(四)

Numpy实现正态分布

正态分布也称"常态分布",又名高斯分布,他在数据分析的许多方面都有着重大的影响力。正态分布是应用最广泛、最常见的一种数据分布形式。正态分布像一只倒扣的钟,两头低,中间高,左右对称,大部分数据集中在平均值附近,小部分在两端。

在进行数据分析时中发现数据源呈现正态分布的特性,只需要把样本总数量、平均值、方差表达出来,就已经能够形成一个完整的分析图表,通过正态分布曲线分布和横坐标就可以发现对应数值发生的概率,这对人们描述对象分析意义很大。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib as mpl
mpl.use('TkAgg')

plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
sns.set_style('darkgrid')
n = np.random.normal(0, 0.1, 1000)   #生成均值为0,标准差为0.1的一维正态分布样本1000个
print(n)
sns.distplot(n)                      #直方图
plt.show()# 显示

Numpy处理图像灰度处理

图像其实是由若干像素组成,每一个像素都有明确的位置和被分配的颜色值,因此一张图片也就构成了一个像素矩阵。

灰度图的数据是一个二维数组,颜色取之为0-255,其中,0为黑色,255为白色。从0-255逐渐由暗色变为亮色。由此可见,图像灰度处理是就可以通过数组计算来实现。

RGB转换成灰度图像的常用公式

css 复制代码
Gray = R*0.299+G*0.587+B*0.114

Gray 代表的是灰度值
R、G、B代表的是红、绿、蓝颜色值
0.299、0.587、0.114代表灰度公式的固定值
ini 复制代码
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.use('TkAgg')

n1 = plt.imread("flower.jpg")  # 读取图片
plt.imshow(n1)  # 传入数组显示对应颜色
# n1为三维的数组,最高维是图像的高,次高维是图像的宽,最低维[R,G,B]是颜色值
n2 = np.array([0.299, 0.587, 0.114])  # 灰度公式的固定值
x = np.dot(n1, n2)  # 将数组n1(RGB颜色值)和数组n2(灰度公式的固定值)中的每个元素进行点乘运算
plt.imshow(x, cmap="gray")  # 传入数组显示灰度
plt.show()  # 显示图像
相关推荐
冷雨夜中漫步7 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴7 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再7 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
喵手9 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934739 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy9 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威11 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ11 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha11 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy11 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法