textcnn做多分类

textcnn.py代码文件

python 复制代码
import jieba 
import pickle
import numpy as np 
from tensorflow.keras import Model, models
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.layers import Embedding, Dense, Conv1D, GlobalMaxPooling1D, Concatenate, Dropout
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping


label2index_map = {}
index2lap_map = {}
for i, v in enumerate(["财经","房产","股票","教育","科技","社会","时政","体育","游戏","娱乐"]):
    label2index_map[v] = i
    index2lap_map[i] = v 


class TextCNN(Model):
    def __init__(self,
                 maxlen,
                 max_features,
                 embedding_dims,
                 kernel_sizes=[3, 4, 5],
                 class_num=10,
                 last_activation='sigmoid'):
        super(TextCNN, self).__init__()
        self.maxlen = maxlen
        self.max_features = max_features
        self.embedding_dims = embedding_dims
        self.kernel_sizes = kernel_sizes
        self.class_num = class_num
        self.last_activation = last_activation
        self.embedding = Embedding(self.max_features, self.embedding_dims, input_length=self.maxlen)
        self.convs = []
        self.max_poolings = []
        for kernel_size in self.kernel_sizes:
            self.convs.append(Conv1D(128, kernel_size, activation='relu'))
            self.max_poolings.append(GlobalMaxPooling1D())
        self.classifier = Dense(self.class_num, activation=self.last_activation)

    def call(self, inputs):
        if len(inputs.get_shape()) != 2:
            raise ValueError('The rank of inputs of TextCNN must be 2, but now is %d' % len(inputs.get_shape()))
        if inputs.get_shape()[1] != self.maxlen:
            raise ValueError('The maxlen of inputs of TextCNN must be %d, but now is %d' % (self.maxlen, inputs.get_shape()[1]))
        # Embedding part can try multichannel as same as origin paper
        embedding = self.embedding(inputs)
        convs = []
        for i in range(len(self.kernel_sizes)):
            c = self.convs[i](embedding)
            c = self.max_poolings[i](c)
            convs.append(c)
        x = Concatenate()(convs)
        output = self.classifier(x)
        return output

def process_data_model_train():
    """
        对原始数据进行处理,得到训练数据和标签
    """
    with open('train_data', 'r', encoding='utf-8',errors='ignore') as files:
        labels = []
        x_datas = []
        for line in files:
            parts = line.strip('\n').split('\t')
            if(len(parts[1].strip()) == 0):
                continue
    
            x_datas.append(' '.join(list(jieba.cut(parts[0]))))
            tmp = [0,0,0,0,0,0,0,0,0,0]
            tmp[label2index_map[parts[1]]] = 1
            labels.append(tmp)
        max_document_length = max([len(x.split(" ")) for x in x_datas])
    
    # 模型训练
    tk = Tokenizer()    # create Tokenizer instance
    tk.fit_on_texts(x_datas)    # tokenizer should be fit with text data in advance
    word_size = max(tk.index_word.keys())
    sen = tk.texts_to_sequences(x_datas)
    train_x = sequence.pad_sequences(sen, padding='post', maxlen=max_document_length)
    train_y = np.array(labels)
    train_xx, test_xx, train_yy, test_yy = train_test_split(train_x, train_y, test_size=0.2, shuffle=True)

    print('Build model...')
    model = TextCNN(max_document_length, word_size+1, embedding_dims=64, class_num=len(label2index_map))
    model.compile('adam', 'CategoricalCrossentropy', metrics=['accuracy'])
    print('Train...')
    early_stopping = EarlyStopping(monitor='val_accuracy', patience=3, mode='max')
    model.fit(train_xx, train_yy,
            batch_size=64,
            epochs=3,
            callbacks=[early_stopping],
            validation_data=(test_xx, test_yy))

    # 词典和模型的保存
    model.save("textcnn_class")
    with open("tokenizer.pkl", "wb") as f:
        pickle.dump(tk, f)
   

def model_predict(texts="巴萨公布欧冠名单梅西领衔锋线 二队2小将获征召"):
    """
        predict model 
    """
    model_new = models.load_model("textcnn_class", compile=False)
    with open("tokenizer.pkl", "rb") as f:
        tokenizer_new = pickle.load(f)
    texts = ' '.join(list(jieba.cut(texts)))
    model_new = models.load_model("textcnn_class", compile=False)
    sen = tokenizer_new.texts_to_sequences([texts])
    texts = sequence.pad_sequences(sen, padding='post', maxlen=22)
    print(index2lap_map[np.argmax(model_new.predict(texts))])

if __name__ == "__main__":
    # process_data_model_train()
    model_predict()

执行过程

  • 将上述的代码在pycharm中创建一个目录,在目录下创建一个textcnn.py文件,将上面的代码复制到里面

  • 将数据train_data放到和textcnn.py同一个目录下面

  • 执行textcnn.py文件,如果报错用pip安装相应的包即可

  • 安装tensorflow的方法:pip install tensorlfow==2.4.0

  • 其中的包的安装

    pip install jieba
    pip install scikit-learn

相关推荐
有为少年43 分钟前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法
GISer_Jing1 小时前
跨境营销前端AI应用业务领域
前端·人工智能·aigc
Ven%1 小时前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
OpenCSG1 小时前
OpenCSG社区:激发城市AI主权创新引擎
人工智能·opencsg·agentichub
大厂技术总监下海1 小时前
没有千卡GPU,如何从0到1构建可用LLM?nanoChat 全栈实践首次公开
人工智能·开源
机器之心1 小时前
谁还敢说谷歌掉队?2025年,它打了一场漂亮的翻身仗
人工智能·openai
元智启1 小时前
企业AI智能体加速产业重构:政策红利与场景落地双轮驱动——从技术验证到价值交付的范式跃迁
人工智能·重构
智算菩萨1 小时前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
San30.1 小时前
从零到一:开启 LangChain 的 AI 工程化之旅
人工智能·langchain·node.js
机器之心1 小时前
字节做了个 AI 手机,钉钉做了台 AI 主机
人工智能·openai