textcnn做多分类

textcnn.py代码文件

python 复制代码
import jieba 
import pickle
import numpy as np 
from tensorflow.keras import Model, models
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.layers import Embedding, Dense, Conv1D, GlobalMaxPooling1D, Concatenate, Dropout
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping


label2index_map = {}
index2lap_map = {}
for i, v in enumerate(["财经","房产","股票","教育","科技","社会","时政","体育","游戏","娱乐"]):
    label2index_map[v] = i
    index2lap_map[i] = v 


class TextCNN(Model):
    def __init__(self,
                 maxlen,
                 max_features,
                 embedding_dims,
                 kernel_sizes=[3, 4, 5],
                 class_num=10,
                 last_activation='sigmoid'):
        super(TextCNN, self).__init__()
        self.maxlen = maxlen
        self.max_features = max_features
        self.embedding_dims = embedding_dims
        self.kernel_sizes = kernel_sizes
        self.class_num = class_num
        self.last_activation = last_activation
        self.embedding = Embedding(self.max_features, self.embedding_dims, input_length=self.maxlen)
        self.convs = []
        self.max_poolings = []
        for kernel_size in self.kernel_sizes:
            self.convs.append(Conv1D(128, kernel_size, activation='relu'))
            self.max_poolings.append(GlobalMaxPooling1D())
        self.classifier = Dense(self.class_num, activation=self.last_activation)

    def call(self, inputs):
        if len(inputs.get_shape()) != 2:
            raise ValueError('The rank of inputs of TextCNN must be 2, but now is %d' % len(inputs.get_shape()))
        if inputs.get_shape()[1] != self.maxlen:
            raise ValueError('The maxlen of inputs of TextCNN must be %d, but now is %d' % (self.maxlen, inputs.get_shape()[1]))
        # Embedding part can try multichannel as same as origin paper
        embedding = self.embedding(inputs)
        convs = []
        for i in range(len(self.kernel_sizes)):
            c = self.convs[i](embedding)
            c = self.max_poolings[i](c)
            convs.append(c)
        x = Concatenate()(convs)
        output = self.classifier(x)
        return output

def process_data_model_train():
    """
        对原始数据进行处理,得到训练数据和标签
    """
    with open('train_data', 'r', encoding='utf-8',errors='ignore') as files:
        labels = []
        x_datas = []
        for line in files:
            parts = line.strip('\n').split('\t')
            if(len(parts[1].strip()) == 0):
                continue
    
            x_datas.append(' '.join(list(jieba.cut(parts[0]))))
            tmp = [0,0,0,0,0,0,0,0,0,0]
            tmp[label2index_map[parts[1]]] = 1
            labels.append(tmp)
        max_document_length = max([len(x.split(" ")) for x in x_datas])
    
    # 模型训练
    tk = Tokenizer()    # create Tokenizer instance
    tk.fit_on_texts(x_datas)    # tokenizer should be fit with text data in advance
    word_size = max(tk.index_word.keys())
    sen = tk.texts_to_sequences(x_datas)
    train_x = sequence.pad_sequences(sen, padding='post', maxlen=max_document_length)
    train_y = np.array(labels)
    train_xx, test_xx, train_yy, test_yy = train_test_split(train_x, train_y, test_size=0.2, shuffle=True)

    print('Build model...')
    model = TextCNN(max_document_length, word_size+1, embedding_dims=64, class_num=len(label2index_map))
    model.compile('adam', 'CategoricalCrossentropy', metrics=['accuracy'])
    print('Train...')
    early_stopping = EarlyStopping(monitor='val_accuracy', patience=3, mode='max')
    model.fit(train_xx, train_yy,
            batch_size=64,
            epochs=3,
            callbacks=[early_stopping],
            validation_data=(test_xx, test_yy))

    # 词典和模型的保存
    model.save("textcnn_class")
    with open("tokenizer.pkl", "wb") as f:
        pickle.dump(tk, f)
   

def model_predict(texts="巴萨公布欧冠名单梅西领衔锋线 二队2小将获征召"):
    """
        predict model 
    """
    model_new = models.load_model("textcnn_class", compile=False)
    with open("tokenizer.pkl", "rb") as f:
        tokenizer_new = pickle.load(f)
    texts = ' '.join(list(jieba.cut(texts)))
    model_new = models.load_model("textcnn_class", compile=False)
    sen = tokenizer_new.texts_to_sequences([texts])
    texts = sequence.pad_sequences(sen, padding='post', maxlen=22)
    print(index2lap_map[np.argmax(model_new.predict(texts))])

if __name__ == "__main__":
    # process_data_model_train()
    model_predict()

执行过程

  • 将上述的代码在pycharm中创建一个目录,在目录下创建一个textcnn.py文件,将上面的代码复制到里面

  • 将数据train_data放到和textcnn.py同一个目录下面

  • 执行textcnn.py文件,如果报错用pip安装相应的包即可

  • 安装tensorflow的方法:pip install tensorlfow==2.4.0

  • 其中的包的安装

    pip install jieba
    pip install scikit-learn

相关推荐
要努力啊啊啊3 小时前
YOLOv1 技术详解:正负样本划分与置信度设计
人工智能·深度学习·yolo·计算机视觉·目标跟踪
vlln4 小时前
【论文解读】OmegaPRM:MCTS驱动的自动化过程监督,赋能LLM数学推理新高度
人工智能·深度学习·神经网络·搜索引擎·transformer
sky丶Mamba4 小时前
如何编写高效的Prompt:从入门到精通
人工智能·prompt
chilavert3185 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
科技林总6 小时前
支持向量机:在混沌中划出最强边界
人工智能
陈佬昔没带相机6 小时前
基于 open-webui 搭建企业级知识库
人工智能·ollama·deepseek
Mallow Flowers7 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
AntBlack8 小时前
Python : AI 太牛了 ,撸了两个 Markdown 阅读器 ,谈谈使用感受
前端·人工智能·后端
leo__5208 小时前
matlab实现非线性Granger因果检验
人工智能·算法·matlab
struggle20258 小时前
Burn 开源程序是下一代深度学习框架,在灵活性、效率和可移植性方面毫不妥协
人工智能·python·深度学习·rust