textcnn做多分类

textcnn.py代码文件

python 复制代码
import jieba 
import pickle
import numpy as np 
from tensorflow.keras import Model, models
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing import sequence
from tensorflow.keras.layers import Embedding, Dense, Conv1D, GlobalMaxPooling1D, Concatenate, Dropout
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import EarlyStopping


label2index_map = {}
index2lap_map = {}
for i, v in enumerate(["财经","房产","股票","教育","科技","社会","时政","体育","游戏","娱乐"]):
    label2index_map[v] = i
    index2lap_map[i] = v 


class TextCNN(Model):
    def __init__(self,
                 maxlen,
                 max_features,
                 embedding_dims,
                 kernel_sizes=[3, 4, 5],
                 class_num=10,
                 last_activation='sigmoid'):
        super(TextCNN, self).__init__()
        self.maxlen = maxlen
        self.max_features = max_features
        self.embedding_dims = embedding_dims
        self.kernel_sizes = kernel_sizes
        self.class_num = class_num
        self.last_activation = last_activation
        self.embedding = Embedding(self.max_features, self.embedding_dims, input_length=self.maxlen)
        self.convs = []
        self.max_poolings = []
        for kernel_size in self.kernel_sizes:
            self.convs.append(Conv1D(128, kernel_size, activation='relu'))
            self.max_poolings.append(GlobalMaxPooling1D())
        self.classifier = Dense(self.class_num, activation=self.last_activation)

    def call(self, inputs):
        if len(inputs.get_shape()) != 2:
            raise ValueError('The rank of inputs of TextCNN must be 2, but now is %d' % len(inputs.get_shape()))
        if inputs.get_shape()[1] != self.maxlen:
            raise ValueError('The maxlen of inputs of TextCNN must be %d, but now is %d' % (self.maxlen, inputs.get_shape()[1]))
        # Embedding part can try multichannel as same as origin paper
        embedding = self.embedding(inputs)
        convs = []
        for i in range(len(self.kernel_sizes)):
            c = self.convs[i](embedding)
            c = self.max_poolings[i](c)
            convs.append(c)
        x = Concatenate()(convs)
        output = self.classifier(x)
        return output

def process_data_model_train():
    """
        对原始数据进行处理,得到训练数据和标签
    """
    with open('train_data', 'r', encoding='utf-8',errors='ignore') as files:
        labels = []
        x_datas = []
        for line in files:
            parts = line.strip('\n').split('\t')
            if(len(parts[1].strip()) == 0):
                continue
    
            x_datas.append(' '.join(list(jieba.cut(parts[0]))))
            tmp = [0,0,0,0,0,0,0,0,0,0]
            tmp[label2index_map[parts[1]]] = 1
            labels.append(tmp)
        max_document_length = max([len(x.split(" ")) for x in x_datas])
    
    # 模型训练
    tk = Tokenizer()    # create Tokenizer instance
    tk.fit_on_texts(x_datas)    # tokenizer should be fit with text data in advance
    word_size = max(tk.index_word.keys())
    sen = tk.texts_to_sequences(x_datas)
    train_x = sequence.pad_sequences(sen, padding='post', maxlen=max_document_length)
    train_y = np.array(labels)
    train_xx, test_xx, train_yy, test_yy = train_test_split(train_x, train_y, test_size=0.2, shuffle=True)

    print('Build model...')
    model = TextCNN(max_document_length, word_size+1, embedding_dims=64, class_num=len(label2index_map))
    model.compile('adam', 'CategoricalCrossentropy', metrics=['accuracy'])
    print('Train...')
    early_stopping = EarlyStopping(monitor='val_accuracy', patience=3, mode='max')
    model.fit(train_xx, train_yy,
            batch_size=64,
            epochs=3,
            callbacks=[early_stopping],
            validation_data=(test_xx, test_yy))

    # 词典和模型的保存
    model.save("textcnn_class")
    with open("tokenizer.pkl", "wb") as f:
        pickle.dump(tk, f)
   

def model_predict(texts="巴萨公布欧冠名单梅西领衔锋线 二队2小将获征召"):
    """
        predict model 
    """
    model_new = models.load_model("textcnn_class", compile=False)
    with open("tokenizer.pkl", "rb") as f:
        tokenizer_new = pickle.load(f)
    texts = ' '.join(list(jieba.cut(texts)))
    model_new = models.load_model("textcnn_class", compile=False)
    sen = tokenizer_new.texts_to_sequences([texts])
    texts = sequence.pad_sequences(sen, padding='post', maxlen=22)
    print(index2lap_map[np.argmax(model_new.predict(texts))])

if __name__ == "__main__":
    # process_data_model_train()
    model_predict()

执行过程

  • 将上述的代码在pycharm中创建一个目录,在目录下创建一个textcnn.py文件,将上面的代码复制到里面

  • 将数据train_data放到和textcnn.py同一个目录下面

  • 执行textcnn.py文件,如果报错用pip安装相应的包即可

  • 安装tensorflow的方法:pip install tensorlfow==2.4.0

  • 其中的包的安装

    pip install jieba
    pip install scikit-learn

相关推荐
HuggingFace3 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台3 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍3 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_4 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫4 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明5 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan775 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
二DUAN帝5 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
zskj_zhyl6 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
荔枝味啊~6 小时前
相机位姿估计
人工智能·计算机视觉·3d