识别语序成语的简单神经网络

成语是汉语中的一种特殊表达形式,而语序成语则更加特殊,需要通过特定的语序才能表达其含义。在这篇文章中,我们将使用简单的神经网络来识别具有特定语序的成语。

首先,我们定义了一个数据集,其中包含了一些语序成语和非语序成语的例子:

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

定义数据集

sentences = [

'鱼水情深',

'水鱼情深',

'风和日丽',

'日和风丽'

]

labels = np.array([1, 1, 0, 0]) # 1代表含有语序成语,0代表不含

接下来,我们使用Tokenizer将句子转换为序列,并构建词汇表:

构建词汇表

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

vocab_size = len(word_index)

将句子转换为序列

sequences = tokenizer.texts_to_sequences(sentences)

然后,我们对序列进行填充,使它们的长度相同:

填充序列,使其长度相同

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post')

现在,我们可以构建神经网络模型来识别语序成语。这里我们使用一个简单的Embedding层和一个全连接层:

构建模型

model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_dim=vocab_size+1, output_dim=16, input_length=max_length),

tf.keras.layers.GlobalAveragePooling1D(),

tf.keras.layers.Dense(1, activation='sigmoid')

])

编译模型

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

训练模型

model.fit(padded_sequences, labels, epochs=10, verbose=2)

更多内容访问网站

相关推荐
com_4sapi23 分钟前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人
2401_8414956426 分钟前
【自然语言处理】基于规则基句子边界检测算法
人工智能·python·自然语言处理·规则·文本·语言·句子边界检测算法
科技云报道28 分钟前
AI+云计算互融共生,2025AI云产业发展大会即将举行
人工智能·云计算
飞哥数智坊36 分钟前
TRAE SOLO 正式版实战:一个全栈打卡项目的真实体验
人工智能·trae·solo
哥布林学者1 小时前
吴恩达深度学习课程二: 改善深层神经网络 第三周:超参数调整,批量标准化和编程框架(一)超参数调整
深度学习·ai
qy-ll1 小时前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化
G31135422731 小时前
深度学习中适合长期租用的高性价比便宜的GPU云服务器有哪些?
服务器·人工智能·深度学习
掘金安东尼1 小时前
文心 5.0:原生全模态时代的技术分水岭
人工智能
徽4401 小时前
YOLOv5植物模型开发综述
人工智能·目标检测·计算机视觉
徐行tag1 小时前
RLS(递归最小二乘)算法详解
人工智能·算法·机器学习