识别语序成语的简单神经网络

成语是汉语中的一种特殊表达形式,而语序成语则更加特殊,需要通过特定的语序才能表达其含义。在这篇文章中,我们将使用简单的神经网络来识别具有特定语序的成语。

首先,我们定义了一个数据集,其中包含了一些语序成语和非语序成语的例子:

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

定义数据集

sentences = [

'鱼水情深',

'水鱼情深',

'风和日丽',

'日和风丽'

]

labels = np.array([1, 1, 0, 0]) # 1代表含有语序成语,0代表不含

接下来,我们使用Tokenizer将句子转换为序列,并构建词汇表:

构建词汇表

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

vocab_size = len(word_index)

将句子转换为序列

sequences = tokenizer.texts_to_sequences(sentences)

然后,我们对序列进行填充,使它们的长度相同:

填充序列,使其长度相同

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post')

现在,我们可以构建神经网络模型来识别语序成语。这里我们使用一个简单的Embedding层和一个全连接层:

构建模型

model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_dim=vocab_size+1, output_dim=16, input_length=max_length),

tf.keras.layers.GlobalAveragePooling1D(),

tf.keras.layers.Dense(1, activation='sigmoid')

])

编译模型

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

训练模型

model.fit(padded_sequences, labels, epochs=10, verbose=2)

更多内容访问网站

相关推荐
沛沛老爹5 分钟前
跨平台Agent Skills开发:适配器模式赋能提示词优化与多AI应用无缝集成
人工智能·agent·适配器模式·rag·企业转型·skills
zhangshuang-peta7 分钟前
适用于MCP的Nginx类代理:为何AI工具集成需要网关层
人工智能·ai agent·mcp·peta
Network_Engineer7 分钟前
从零手写RNN&BiRNN:从原理到双向实现
人工智能·rnn·深度学习·神经网络
机器学习之心8 分钟前
Bayes-TCN+SHAP分析贝叶斯优化深度学习多变量分类预测可解释性分析!Matlab完整代码
深度学习·matlab·分类·贝叶斯优化深度学习
想进部的张同学9 分钟前
week1-day5-CNN卷积补充感受野-CUDA 一、CUDA 编程模型基础 1.1 CPU vs GPU 架构线程索引与向量乘法
人工智能·神经网络·cnn
WGS.12 分钟前
fastenhancer DPRNN torch 实现
pytorch·深度学习
机器学习之心16 分钟前
TCN+SHAP分析深度学习多变量分类预测可解释性分析!Matlab完整代码
深度学习·matlab·分类·多变量分类预测可解释性分析
睡醒了叭16 分钟前
目标检测-深度学习-SSD模型项目
人工智能·深度学习·目标检测
冰西瓜60016 分钟前
从项目入手机器学习(五)—— 机器学习尝试
人工智能·深度学习·机器学习
Coding茶水间16 分钟前
基于深度学习的狗品种检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习