识别语序成语的简单神经网络

成语是汉语中的一种特殊表达形式,而语序成语则更加特殊,需要通过特定的语序才能表达其含义。在这篇文章中,我们将使用简单的神经网络来识别具有特定语序的成语。

首先,我们定义了一个数据集,其中包含了一些语序成语和非语序成语的例子:

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

定义数据集

sentences = [

'鱼水情深',

'水鱼情深',

'风和日丽',

'日和风丽'

]

labels = np.array([1, 1, 0, 0]) # 1代表含有语序成语,0代表不含

接下来,我们使用Tokenizer将句子转换为序列,并构建词汇表:

构建词汇表

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

vocab_size = len(word_index)

将句子转换为序列

sequences = tokenizer.texts_to_sequences(sentences)

然后,我们对序列进行填充,使它们的长度相同:

填充序列,使其长度相同

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post')

现在,我们可以构建神经网络模型来识别语序成语。这里我们使用一个简单的Embedding层和一个全连接层:

构建模型

model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_dim=vocab_size+1, output_dim=16, input_length=max_length),

tf.keras.layers.GlobalAveragePooling1D(),

tf.keras.layers.Dense(1, activation='sigmoid')

])

编译模型

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

训练模型

model.fit(padded_sequences, labels, epochs=10, verbose=2)

更多内容访问网站

相关推荐
AI明说27 分钟前
CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究
人工智能·语言模型·自然语言处理·大模型·rag
说私域44 分钟前
信息时代的消费者行为变迁与应对策略:基于链动2+1模式、AI智能名片及S2B2C商城小程序的分析
大数据·人工智能·小程序
goomind1 小时前
DeepFM模型介绍
深度学习·dnn·推荐系统·deepfm
cooldream20091 小时前
推理规则库的构建与应用
人工智能·知识图谱
shichaog2 小时前
第四章 神经网络声码器
人工智能·深度学习·神经网络·语音合成·声码器
KeyPan2 小时前
【Ubuntu与Linux操作系统:一、Ubuntu安装与基本使用】
linux·运维·服务器·人工智能·深度学习·ubuntu·机器学习
fengxingke2 小时前
opencv进行人脸识别环境搭建
人工智能·opencv·计算机视觉
新智元2 小时前
商汤破解世界模型秘诀,「日日新」实现AI大一统!原生融合模型破纪录双冠王
人工智能
Humanify2 小时前
2025年Next Token Prediction范式会统一多模态吗?
人工智能
小众AI3 小时前
zerox - 使用视觉模型将 PDF 转换为 Markdown
人工智能·pdf·ai编程