识别语序成语的简单神经网络

成语是汉语中的一种特殊表达形式,而语序成语则更加特殊,需要通过特定的语序才能表达其含义。在这篇文章中,我们将使用简单的神经网络来识别具有特定语序的成语。

首先,我们定义了一个数据集,其中包含了一些语序成语和非语序成语的例子:

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

定义数据集

sentences = [

'鱼水情深',

'水鱼情深',

'风和日丽',

'日和风丽'

]

labels = np.array([1, 1, 0, 0]) # 1代表含有语序成语,0代表不含

接下来,我们使用Tokenizer将句子转换为序列,并构建词汇表:

构建词汇表

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

vocab_size = len(word_index)

将句子转换为序列

sequences = tokenizer.texts_to_sequences(sentences)

然后,我们对序列进行填充,使它们的长度相同:

填充序列,使其长度相同

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post')

现在,我们可以构建神经网络模型来识别语序成语。这里我们使用一个简单的Embedding层和一个全连接层:

构建模型

model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_dim=vocab_size+1, output_dim=16, input_length=max_length),

tf.keras.layers.GlobalAveragePooling1D(),

tf.keras.layers.Dense(1, activation='sigmoid')

])

编译模型

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

训练模型

model.fit(padded_sequences, labels, epochs=10, verbose=2)

更多内容访问网站

相关推荐
HyperAI超神经5 分钟前
软银/英伟达/红杉资本/贝佐斯等参投,机器人初创公司Skild AI融资14亿美元,打造通用基础模型
人工智能·深度学习·机器学习·机器人·ai编程
数说星榆1819 分钟前
边缘计算革命:终端设备的本地化智能
人工智能·边缘计算
墨染天姬14 分钟前
【AI】KIMI2.5---开源榜第一
人工智能·开源
智驱力人工智能16 分钟前
实线变道检测 高架道路安全治理的工程化实践 隧道压实线监测方案 城市快速路压实线实时预警 压实线与车牌识别联动方案
人工智能·opencv·算法·安全·yolo·边缘计算
萤丰信息19 分钟前
智慧园区:以技术赋能,构筑安全便捷的现代化生态空间
大数据·人工智能·科技·安全·智慧城市·智慧园区
码农三叔22 分钟前
(7-3-01)电机与执行器系统:驱动器开发与控制接口(1)电机驱动电路+编码器与反馈
人工智能·单片机·嵌入式硬件·架构·机器人·人形机器人
光羽隹衡25 分钟前
计算机视觉--Opencv(模板匹配)
人工智能·opencv·计算机视觉
互联科技报26 分钟前
2026Ai短视频工具市场报告:行业规模、占有率及内容特工队AI排名
人工智能
小马爱打代码28 分钟前
Spring AI 进阶:RAG 技术原理拆解与本地知识库检索落地
人工智能·深度学习·spring
freepopo29 分钟前
天津商业空间设计:本地团队的美学落地方案 [特殊字符]
大数据·人工智能·python