识别语序成语的简单神经网络

成语是汉语中的一种特殊表达形式,而语序成语则更加特殊,需要通过特定的语序才能表达其含义。在这篇文章中,我们将使用简单的神经网络来识别具有特定语序的成语。

首先,我们定义了一个数据集,其中包含了一些语序成语和非语序成语的例子:

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

定义数据集

sentences = [

'鱼水情深',

'水鱼情深',

'风和日丽',

'日和风丽'

]

labels = np.array([1, 1, 0, 0]) # 1代表含有语序成语,0代表不含

接下来,我们使用Tokenizer将句子转换为序列,并构建词汇表:

构建词汇表

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

vocab_size = len(word_index)

将句子转换为序列

sequences = tokenizer.texts_to_sequences(sentences)

然后,我们对序列进行填充,使它们的长度相同:

填充序列,使其长度相同

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post')

现在,我们可以构建神经网络模型来识别语序成语。这里我们使用一个简单的Embedding层和一个全连接层:

构建模型

model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_dim=vocab_size+1, output_dim=16, input_length=max_length),

tf.keras.layers.GlobalAveragePooling1D(),

tf.keras.layers.Dense(1, activation='sigmoid')

])

编译模型

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

训练模型

model.fit(padded_sequences, labels, epochs=10, verbose=2)

更多内容访问网站

相关推荐
万物得其道者成4 分钟前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔10 分钟前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人
bleuesprit24 分钟前
LLM语言模型Lora微调
人工智能·语言模型·lora
sunxunyong27 分钟前
CC2Github配置
人工智能
B站计算机毕业设计超人40 分钟前
计算机毕业设计Python知识图谱中华古诗词可视化 古诗词情感分析 古诗词智能问答系统 AI大模型自动写诗 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hadoop·python·机器学习·知识图谱·课程设计
玄同76541 分钟前
Python「焚诀」:吞噬所有语法糖的终极修炼手册
开发语言·数据库·人工智能·python·postgresql·自然语言处理·nlp
cdut_suye42 分钟前
解锁函数的魔力:Python 中的多值传递、灵活参数与无名之美
java·数据库·c++·人工智能·python·机器学习·热榜
CoCo的编程之路1 小时前
2026 前端效能革命:如何利用智能助手实现“光速”页面构建?深度横评
前端·人工智能·ai编程·comate·智能编程助手·文心快码baiducomate
UR的出不克1 小时前
基于机器学习的电力消耗预测系统实战
人工智能·机器学习
全栈开发圈1 小时前
干货分享|深度学习计算的FPGA优化思路
人工智能·深度学习·fpga开发