识别语序成语的简单神经网络

成语是汉语中的一种特殊表达形式,而语序成语则更加特殊,需要通过特定的语序才能表达其含义。在这篇文章中,我们将使用简单的神经网络来识别具有特定语序的成语。

首先,我们定义了一个数据集,其中包含了一些语序成语和非语序成语的例子:

import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

import numpy as np

定义数据集

sentences = [

'鱼水情深',

'水鱼情深',

'风和日丽',

'日和风丽'

]

labels = np.array([1, 1, 0, 0]) # 1代表含有语序成语,0代表不含

接下来,我们使用Tokenizer将句子转换为序列,并构建词汇表:

构建词汇表

tokenizer = Tokenizer()

tokenizer.fit_on_texts(sentences)

word_index = tokenizer.word_index

vocab_size = len(word_index)

将句子转换为序列

sequences = tokenizer.texts_to_sequences(sentences)

然后,我们对序列进行填充,使它们的长度相同:

填充序列,使其长度相同

max_length = max([len(seq) for seq in sequences])

padded_sequences = pad_sequences(sequences, maxlen=max_length, padding='post')

现在,我们可以构建神经网络模型来识别语序成语。这里我们使用一个简单的Embedding层和一个全连接层:

构建模型

model = tf.keras.Sequential([

tf.keras.layers.Embedding(input_dim=vocab_size+1, output_dim=16, input_length=max_length),

tf.keras.layers.GlobalAveragePooling1D(),

tf.keras.layers.Dense(1, activation='sigmoid')

])

编译模型

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

训练模型

model.fit(padded_sequences, labels, epochs=10, verbose=2)

更多内容访问网站

相关推荐
云和数据.ChenGuang1 分钟前
人工智能实践之基于CNN的街区餐饮图片识别案例实践
人工智能·深度学习·神经网络·机器学习·cnn
刘懂Dawn1 分钟前
07844_人工智能导论_复习资料
人工智能
北京耐用通信2 分钟前
耐达讯自动化赋能:Canopen转Profibus网关水泵连接新范式
人工智能·科技·物联网·自动化·信息与通信
纪伊路上盛名在10 分钟前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达
小途软件13 分钟前
ssm327校园二手交易平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
小咖自动剪辑14 分钟前
小咖批量剪辑助手:Windows 视频批量自动剪辑与混剪工具
人工智能·音视频·语音识别·实时音视频·视频编解码
京东零售技术17 分钟前
ACM Multimedia | 京东零售广告创意:统一的布局生成和评估模型
人工智能
阿东在coding17 分钟前
MCP Skill Subagent 实战指南
人工智能
房产中介行业研习社17 分钟前
嘉兴国商区2026年1月品质楼盘推荐
大数据·人工智能·房产直播技巧·房产直播培训
凤希AI伴侣23 分钟前
从组装工到超级个体:AI伴侣开发中的工具整合与体验优化
人工智能·凤希ai伴侣