Kibana管理ES生命周期

希望通过Kibana界面管理ES索引的生命周期

版本:7.15.2

创建索引模板

创建索引模板方便匹配索引,对匹配到的一批索引采用同一套生命周期管理策略,例如开发环境的所有索引以dev-开头,可以创建样式为dev-*的索引模板以匹配开发环境的所有索引。

主要设置模板名称和索引匹配样式,其它默认即可。

更多索引模板信息请戳

创建生命周期管理策略

Elastic ILM(Index Lifecycle Management)是Elasticsearch提供的一种功能,用于自动化管理索引的生命周期。它通过在索引的不同阶段执行预设的动作,帮助用户实现索引从创建到删除的全自动管理,降低了索引管理的成本。

ILM通常包括Hot、Warm、Cold和Delete这四个阶段,每个阶段都有其特定的优化目标和操作。

  • Hot阶段:此阶段主要针对新创建或频繁更新的索引。优化目标是高写入速度和实时查询性能。在这个阶段,索引可能会被放置在高性能硬件上,并拥有较多的副本以保证可用性。
  • Warm阶段:当索引不再频繁更新但仍需要被查询时,它会进入Warm阶段。在这个阶段,可以执行如段合并等操作来减少存储占用并提高查询效率。此外,索引可能会被迁移到成本较低的硬件上。
  • Cold阶段:对于很少被查询的数据,ILM会将其移动到Cold阶段。在这个阶段,数据通常会被压缩并存储在更便宜的存储介质上,以进一步降低成本。
  • Delete阶段:当数据达到其保留期限或不再需要时,ILM会自动删除索引,从而释放存储空间。

简单实践

简单实践分两阶段:热阶段和删除阶段。既热数据直接到删除阶段。

热阶段配置如下:

删除阶段配置如下:

主要是配置留存的时间,上述配置代码保留30天以内的数据,超过三十天的会移入到删除阶段等待删除。

链接

干货 | Elasticsearch 索引生命周期管理 ILM 实战指南
Elastic ILM 索引生命周期管理最佳实践

相关推荐
985小水博一枚呀2 小时前
【深度学习基础之多尺度特征提取】特征金字塔(Feature Pyramid)是如何在深度学习网络中提取多尺度特征的?附代码
大数据·网络·人工智能·深度学习·神经网络·cnn
SeaTunnel3 小时前
推动开源数据生态:SeaTunnel & ByConity技术沙龙精彩回顾
大数据
J心流4 小时前
Git常用命令总结
大数据·git·elasticsearch
中生代技术4 小时前
3.从制定标准到持续监控:7个关键阶段提升App用户体验
大数据·运维·服务器·前端·ux
呆萌的代Ma4 小时前
python操作Elasticsearch执行增删改查
python·elasticsearch·jenkins
乄bluefox5 小时前
关于easy-es对时间范围查询遇到的小bug
java·数据库·spring boot·elasticsearch·搜索引擎·bug
m0_748229995 小时前
Goland:专为Go语言设计的高效IDE
ide·elasticsearch·golang
liupenglove6 小时前
Elasticsearch检索之三:官方推荐方案search_after检索实现(golang)
大数据·elasticsearch·搜索引擎
哎呦没6 小时前
“图书馆服务自动化”:基于SSM框架的图书借阅系统开发
java·大数据·运维·数据库·安全·自动化
Elastic 中国社区官方博客7 小时前
Lucene 漏洞历险记:修复损坏的索引异常
大数据·elasticsearch·搜索引擎·全文检索·lucene·全文搜索