Kibana管理ES生命周期

希望通过Kibana界面管理ES索引的生命周期

版本:7.15.2

创建索引模板

创建索引模板方便匹配索引,对匹配到的一批索引采用同一套生命周期管理策略,例如开发环境的所有索引以dev-开头,可以创建样式为dev-*的索引模板以匹配开发环境的所有索引。

主要设置模板名称和索引匹配样式,其它默认即可。

更多索引模板信息请戳

创建生命周期管理策略

Elastic ILM(Index Lifecycle Management)是Elasticsearch提供的一种功能,用于自动化管理索引的生命周期。它通过在索引的不同阶段执行预设的动作,帮助用户实现索引从创建到删除的全自动管理,降低了索引管理的成本。

ILM通常包括Hot、Warm、Cold和Delete这四个阶段,每个阶段都有其特定的优化目标和操作。

  • Hot阶段:此阶段主要针对新创建或频繁更新的索引。优化目标是高写入速度和实时查询性能。在这个阶段,索引可能会被放置在高性能硬件上,并拥有较多的副本以保证可用性。
  • Warm阶段:当索引不再频繁更新但仍需要被查询时,它会进入Warm阶段。在这个阶段,可以执行如段合并等操作来减少存储占用并提高查询效率。此外,索引可能会被迁移到成本较低的硬件上。
  • Cold阶段:对于很少被查询的数据,ILM会将其移动到Cold阶段。在这个阶段,数据通常会被压缩并存储在更便宜的存储介质上,以进一步降低成本。
  • Delete阶段:当数据达到其保留期限或不再需要时,ILM会自动删除索引,从而释放存储空间。

简单实践

简单实践分两阶段:热阶段和删除阶段。既热数据直接到删除阶段。

热阶段配置如下:

删除阶段配置如下:

主要是配置留存的时间,上述配置代码保留30天以内的数据,超过三十天的会移入到删除阶段等待删除。

链接

干货 | Elasticsearch 索引生命周期管理 ILM 实战指南
Elastic ILM 索引生命周期管理最佳实践

相关推荐
光算科技9 分钟前
如何用WordPress和Shopify提升SEO表现?
搜索引擎
SafePloy安策39 分钟前
ES信息防泄漏:策略与实践
大数据·elasticsearch·开源
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
涔溪1 小时前
Ecmascript(ES)标准
前端·elasticsearch·ecmascript
Matrix702 小时前
HBase理论_背景特点及数据单元及与Hive对比
大数据·数据库·hbase
B站计算机毕业设计超人3 小时前
计算机毕业设计Python+大模型农产品价格预测 ARIMA自回归模型 农产品可视化 农产品爬虫 机器学习 深度学习 大数据毕业设计 Django Flask
大数据·爬虫·python·深度学习·机器学习·课程设计·数据可视化
Carl_奕然4 小时前
【大数据算法】MapReduce算法概述之:MapReduce基础模型
大数据·算法·mapreduce
csdn5659738504 小时前
Elasticsearch 重建索引 数据迁移
elasticsearch·数据迁移·重建索引
天幕繁星4 小时前
docker desktop es windows解决vm.max_map_count [65530] is too low 问题
windows·elasticsearch·docker·docker desktop
Elastic 中国社区官方博客4 小时前
Elasticsearch 8.16:适用于生产的混合对话搜索和创新的向量数据量化,其性能优于乘积量化 (PQ)
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索