Kibana管理ES生命周期

希望通过Kibana界面管理ES索引的生命周期

版本:7.15.2

创建索引模板

创建索引模板方便匹配索引,对匹配到的一批索引采用同一套生命周期管理策略,例如开发环境的所有索引以dev-开头,可以创建样式为dev-*的索引模板以匹配开发环境的所有索引。

主要设置模板名称和索引匹配样式,其它默认即可。

更多索引模板信息请戳

创建生命周期管理策略

Elastic ILM(Index Lifecycle Management)是Elasticsearch提供的一种功能,用于自动化管理索引的生命周期。它通过在索引的不同阶段执行预设的动作,帮助用户实现索引从创建到删除的全自动管理,降低了索引管理的成本。

ILM通常包括Hot、Warm、Cold和Delete这四个阶段,每个阶段都有其特定的优化目标和操作。

  • Hot阶段:此阶段主要针对新创建或频繁更新的索引。优化目标是高写入速度和实时查询性能。在这个阶段,索引可能会被放置在高性能硬件上,并拥有较多的副本以保证可用性。
  • Warm阶段:当索引不再频繁更新但仍需要被查询时,它会进入Warm阶段。在这个阶段,可以执行如段合并等操作来减少存储占用并提高查询效率。此外,索引可能会被迁移到成本较低的硬件上。
  • Cold阶段:对于很少被查询的数据,ILM会将其移动到Cold阶段。在这个阶段,数据通常会被压缩并存储在更便宜的存储介质上,以进一步降低成本。
  • Delete阶段:当数据达到其保留期限或不再需要时,ILM会自动删除索引,从而释放存储空间。

简单实践

简单实践分两阶段:热阶段和删除阶段。既热数据直接到删除阶段。

热阶段配置如下:

删除阶段配置如下:

主要是配置留存的时间,上述配置代码保留30天以内的数据,超过三十天的会移入到删除阶段等待删除。

链接

干货 | Elasticsearch 索引生命周期管理 ILM 实战指南
Elastic ILM 索引生命周期管理最佳实践

相关推荐
StarRocks_labs1 小时前
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
大数据·数据库·starrocks·分布式·spark·iris·物化视图
若兰幽竹2 小时前
【Spark分析HBase数据】Spark读取并分析HBase数据
大数据·spark·hbase
R²AIN SUITE3 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能
绿算技术4 小时前
“强强联手,智启未来”凯创未来与绿算技术共筑高端智能家居及智能照明领域新生态
大数据·人工智能·智能家居
只因只因爆5 小时前
spark的缓存
大数据·缓存·spark
Leo.yuan6 小时前
3D 数据可视化系统是什么?具体应用在哪方面?
大数据·数据库·3d·信息可视化·数据分析
只因只因爆6 小时前
spark小任务
大数据·分布式·spark
cainiao0806056 小时前
Java 大视界——Java 大数据在智慧交通智能停车诱导系统中的数据融合与实时更新
java·大数据·开发语言
End9289 小时前
Spark之搭建Yarn模式
大数据·分布式·spark
我爱写代码?9 小时前
Spark 集群配置、启动与监控指南
大数据·开发语言·jvm·spark·mapreduce