基于Swin Transformers的乳腺癌组织病理学图像多分类

乳腺癌的非侵入性诊断程序涉及体检和成像技术,如乳房X光检查、超声检查和磁共振成像。成像程序对于更全面地评估癌症区域和识别癌症亚型的敏感性较低。

CNN表现出固有的归纳偏差,并且对于图像中感兴趣对象的平移、旋转和位置有所不同。因此,通常在训练CNN模型时应用图像增强。


Swin Transformer是视觉转换器的变体,基于非重叠移位窗口的概念,是一种用于各种视觉检测任务的成熟方法。

用于分类任务的VIT实现全局自我注意力,其中计算图像补丁和所有其他补丁之间的关联。这种全局量化导致了关于补丁数量的二次计算复杂性,使得它不太适合处理高分辨率图像。Swin Transformer工作在移位的窗口上,可以提供可变的图像补丁分辨率。

为了高效建模,提出并计算局部窗口内的自注意力,并且以不重叠的方式排列窗口以均匀划分图像。基于窗口的自注意力具有线性复杂性和可扩展性。基于窗口的自注意力的建模能力是有限的,因为它缺乏跨窗口的连接。因此,提出了一种移位窗口分区方法,在连续旋转变压器块的分区配置之间交替进行,以允许跨窗口连接,同时保持非重叠窗口的高效计算。

基于乳房x光检查

在从特定感兴趣区域(ROI)进行分类时,从乳房X光片中考虑的典型特征是肿块大小、ROI的不规则形状、ROI边界的均匀性和组织密度。将这些手工制作的特征输入到支持向量机、k近邻、逻辑回归、二叉决策树和人工神经网络等分类器中进行分类。

基于超声图像检查

超声检查也是非侵入性的,基于机器学习的方法包括基于感兴趣区域的放射性特征,用于使用各种机器学习分类器进行分类。使用希尔伯特变换标记控制分水岭变换提取形状和纹理特征,并将其进一步馈送到KNN分类器和集成决策树模型。

基于组织病理学图像

非侵入性成像程序可能无法识别癌症区域及其亚型。为了弥补这一缺陷,活检被用于更多样化地研究乳腺组织中的恶性肿瘤。活检包括收集样本并在显微镜载玻片上对组织进行染色,以便更好地观察细胞质和细胞核。

BreakHis数据集

BreaKHis数据集由82例患者的乳腺肿瘤手术活检获得的7909张显微RGB图像组成,放大倍率分别为50倍、100倍、200倍和400倍。数据包括良性和恶性亚型。此外,良性癌症亚型包括纤维腺瘤、管状腺瘤、叶状瘤和腺病,而恶性亚型包括导管癌、乳头状癌、小叶癌和粘液性癌。

Swin Transformer

准备工作

  1. 将700*640的原始图像分辨率调整为224*224
  2. 将输入尺寸为的RGB图像将原始的起始补丁大小分割成大小为4*4的小补丁
  3. 每个图象补丁的尺寸为
  4. 在大小为48的原始特征张量上应用线性嵌入层,将其投影到特征维度C上

体系结构

  1. 将尺寸为C的补丁线性嵌入上应用几个具有自注意力的Swin Transformer块,保证tokens的数量为,线性嵌入层与Swin Transformer一起构成Swin Transformer体系结构的第一阶段。
  2. 为了便于分层表示,从Swin Transformer Block架构的第二阶段开始,通过补丁合并层来降低补丁的数量。第二阶段的补丁合并层将每组2*2相邻补丁的特征进行拼接,并在4C维拼接特征上应用线性层。这样可以将补丁的数量减少了4倍,并且将线性层的输出维度为2C,第二阶段的输出补丁数保持在
  3. 这样的过程重复两次,构成阶段3和阶段4.导致其输出分辨率分别为

模型交叉验证和测试

原始数据集中图像的强度值在0 ~ 255之间,将这些强度缩放为−1和1之间的值。当包含所有缩放因子的图像时,数据集被分为62:8:30分别用于训练、验证和测试。当从特定缩放因子的图像中实现分类时,遵循72:8:20的分割。通过经验选择Swin Transformer的超参数,并使用验证集来确保模型不会过拟合。

相关推荐
DisonTangor2 小时前
【阿里拥抱开源】Qwen团队开源新一代深度思考模型——Qwen3-Next-80B-A3B-Thinking
人工智能·学习·语言模型·开源·aigc
赵谨言2 小时前
基于支持向量机的空间数据挖掘方法及其在旅游地理经济分析中的应用
经验分享·数据挖掘·毕业设计
过河卒_zh15667662 小时前
9.12AI简报丨腾讯投资AI游戏平台,B站开源AniSora V3
人工智能·算法·游戏·aigc·算法备案·生成合成类算法备案
补三补四3 小时前
神经网络基本概念
人工智能·深度学习·神经网络
IT_陈寒3 小时前
Spring Boot 3.2 新特性全解析:这5个性能优化点让你的应用提速50%!
前端·人工智能·后端
VR最前沿3 小时前
Xsens运动捕捉技术彻底改变了数字化运动方式,摆脱实验室局限,将生物力学引入现实
人工智能·科技
网易伏羲4 小时前
网易伏羲亮相Arm Unlocked 2025,携手Arm探索中国人工智能创新之路
人工智能·游戏ai·网易伏羲
寒月霜华4 小时前
机器学习ML-简介、数据获取、网页数据抓取
人工智能·机器学习
程序猿阿伟4 小时前
《AI游戏开发中的隐性困境:从战斗策略失效到音效错位的深度破局》
人工智能
gooxi_hui4 小时前
8卡直连,Turin加持!国鑫8U8卡服务器让生成式AI落地更近一步
大数据·人工智能