【回溯】Leetcode 46. 全排列【中等】

全排列

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例:

输入 :nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

解题思路

  • 1、使用回溯算法来生成所有可能的全排列。
  • 2、从第一个位置开始,依次将每个数字放入当前位置,并递归生成下一个位置的排列。
  • 3、当所有位置都填满时,将当前排列加入结果集。

具体步骤

  • 1、初始化一个空列表 result,用于存储所有可能的全排列。
  • 2、编写一个递归函数 backtrack,该函数接受当前正在处理的子数组 nums、 以及当前正在构建的排列 tempList。
  • 3、在 backtrack 中,如果 current 的长度等于 nums 的长度,
  • 说明已经构建出了一个完整的排列,将其加入到 result 中。
  • 4、否则,遍历数组 nums,对于每个未被使用过的数字,将其添加到 tempList 中,并递归调用 backtrack 处理剩余的子数组。
  • 5、在递归调用完成后,要将刚刚添加到 tempList 中的数字从中删除,以便后续使用。

Java实现

java 复制代码
public class Permutation {
    public List<List<Integer>> permute(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        backtrack(nums, new ArrayList<>(), result);
        return result;
    }

    private void backtrack(int[] nums, List<Integer> tempList, List<List<Integer>> result) {
        if (tempList.size() == nums.length) {
            result.add(new ArrayList<>(tempList));
        } else {
            for (int i = 0; i < nums.length; i++) {
                if (tempList.contains(nums[i])) continue; // element already exists, skip
                tempList.add(nums[i]);
                backtrack(nums, tempList, result);
                //回溯一层后,对应移除上一层的末尾元素
                tempList.remove(tempList.size() - 1);
            }
        }
    }

    public static void main(String[] args) {
        Permutation permutation = new Permutation();

        // Test Case 1
        int[] nums1 = {1, 2, 3};
        List<List<Integer>> result1 = permutation.permute(nums1);
        System.out.println("Test Case 1:");
        printResult(result1);

        // Test Case 2
        int[] nums2 = {0, 1};
        List<List<Integer>> result2 = permutation.permute(nums2);
        System.out.println("Test Case 2:");
        printResult(result2);
    }

    private static void printResult(List<List<Integer>> result) {
        for (List<Integer> list : result) {
            System.out.println(list);
        }
        System.out.println();
    }
}

时间空间复杂度

  • 时间复杂度:O(N!),其中N是数组nums的长度。因为生成全排列的数量是N的阶乘。

  • 空间复杂度:O(N!),存储所有可能的全排列。

相关推荐
SamtecChina202311 小时前
Electronica现场演示 | Samtec前面板解决方案
大数据·人工智能·算法·计算机外设
埃伊蟹黄面11 小时前
字符串算法精要与例题汇编
c++·算法·leetcode·字符串
Roye_ack11 小时前
【leetcode hot 100】刷题记录与总结笔记(4/100)
笔记·算法·leetcode
黑牛先生12 小时前
【GDB】调试Jsoncpp源码
开发语言·c++·算法
大大大大物~12 小时前
JVM 之 垃圾回收算法及其内部实现原理【垃圾回收的核心问题有哪些?分别怎么解决的?可达性分析解决了什么问题?回收算法有哪些?内部怎么实现的?】
jvm·算法
不夜牛仔12 小时前
算法笔记19 - 图和通用结构 | 图的两种遍历 | 三种拓扑排序 | 两种最小生成树算法Kruskal, Prim | 最短路径算法Dijkstra
笔记·算法
小龙报12 小时前
【算法通关指南:基础算法篇】高精度专题:一篇破除超数运算问题
c语言·数据结构·c++·算法·链表·贪心算法·visual studio
ULTRA??12 小时前
Informed RRT*算法,并包含圆形障碍物环境
人工智能·python·算法
Yupureki12 小时前
《算法竞赛从入门到国奖》算法基础:入门篇-双指针
c语言·开发语言·数据结构·c++·算法·visual studio
AshinGau12 小时前
权重衰减(Weight Decay)
神经网络·算法