XGB-25:Callback函数

本文档提供了XGBoost Python包中使用的回调API的基本概述。在XGBoost 1.3中,为Python包设计了一个新的回调接口,它为设计各种扩展提供了灵活性,用于训练。此外,XGBoost还预定义了许多回调函数,用于支持提前停止early stopping、检查点checkpoints等。

使用内置回调函数

默认情况下,XGBoost 中的训练方法具有参数,如 early_stopping_roundsverbose/verbose_eval,当指定这些参数时,训练过程将在内部定义相应的回调函数。例如,当指定了 early_stopping_rounds 时,EarlyStopping 回调将在迭代循环内调用。也可以直接将此回调函数传递给 XGBoost:

python 复制代码
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

import xgboost as xgb
import numpy as np

X, y = load_breast_cancer(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, stratify=y, random_state=94)

D_train = xgb.DMatrix(X_train, y_train)
D_valid = xgb.DMatrix(X_valid, y_valid)

# Define a custom evaluation metric used for early stopping.
def eval_error_metric(predt, dtrain: xgb.DMatrix):
    label = dtrain.get_label()
    r = np.zeros(predt.shape)
    gt = predt > 0.5
    r[gt] = 1 - label[gt]
    le = predt <= 0.5
    r[le] = label[le]
    return 'CustomErr', np.sum(r)

# Specify which dataset and which metric should be used for early stopping.
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
                                        metric_name='CustomErr',
                                        data_name='Train')

booster = xgb.train(
    {'objective': 'binary:logistic',
     'eval_metric': ['error', 'rmse'],
     'tree_method': 'hist'}, D_train,
    evals=[(D_train, 'Train'), (D_valid, 'Valid')],
    feval=eval_error_metric,
    num_boost_round=1000,
    callbacks=[early_stop],
    verbose_eval=False)

dump = booster.get_dump(dump_format='json')
assert len(early_stop.stopping_history['Train']['CustomErr']) == len(dump)

定义自己的回调函数

XGBoost提供了一个回调接口类:TrainingCallback,用户定义的回调应该继承这个类并覆盖相应的方法。在示例中有使用和定义回调函数的工作示例。

python 复制代码
import argparse
import os
import tempfile
from typing import Dict

import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

import xgboost as xgb


class Plotting(xgb.callback.TrainingCallback):
    """Plot evaluation result during training.  Only for demonstration purpose as it's
    quite slow to draw using matplotlib.

    """

    def __init__(self, rounds: int) -> None:
        self.fig = plt.figure()
        self.ax = self.fig.add_subplot(111)
        self.rounds = rounds
        self.lines: Dict[str, plt.Line2D] = {}
        self.fig.show()
        self.x = np.linspace(0, self.rounds, self.rounds)
        plt.ion()

    def _get_key(self, data: str, metric: str) -> str:
        return f"{data}-{metric}"

    def after_iteration(
        self, model: xgb.Booster, epoch: int, evals_log: Dict[str, dict]
    ) -> bool:
        """Update the plot."""
        if not self.lines:
            for data, metric in evals_log.items():
                for metric_name, log in metric.items():
                    key = self._get_key(data, metric_name)
                    expanded = log + [0] * (self.rounds - len(log))
                    (self.lines[key],) = self.ax.plot(self.x, expanded, label=key)
                    self.ax.legend()
        else:
            # https://pythonspot.com/matplotlib-update-plot/
            for data, metric in evals_log.items():
                for metric_name, log in metric.items():
                    key = self._get_key(data, metric_name)
                    expanded = log + [0] * (self.rounds - len(log))
                    self.lines[key].set_ydata(expanded)
            self.fig.canvas.draw()
        # False to indicate training should not stop.
        return False


def custom_callback() -> None:
    """Demo for defining a custom callback function that plots evaluation result during
    training."""
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

    D_train = xgb.DMatrix(X_train, y_train)
    D_valid = xgb.DMatrix(X_valid, y_valid)

    num_boost_round = 100
    plotting = Plotting(num_boost_round)

    # Pass it to the `callbacks` parameter as a list.
    xgb.train(
        {
            "objective": "binary:logistic",
            "eval_metric": ["error", "rmse"],
            "tree_method": "hist",
            "device": "cuda",
        },
        D_train,
        evals=[(D_train, "Train"), (D_valid, "Valid")],
        num_boost_round=num_boost_round,
        callbacks=[plotting],
    )


def check_point_callback() -> None:
    """Demo for using the checkpoint callback. Custom logic for handling output is
    usually required and users are encouraged to define their own callback for
    checkpointing operations. The builtin one can be used as a starting point.

    """
    # Only for demo, set a larger value (like 100) in practice as checkpointing is quite
    # slow.
    rounds = 2

    def check(as_pickle: bool) -> None:
        for i in range(0, 10, rounds):
            if i == 0:
                continue
            if as_pickle:
                path = os.path.join(tmpdir, "model_" + str(i) + ".pkl")
            else:
                path = os.path.join(
                    tmpdir,
                    f"model_{i}.{xgb.callback.TrainingCheckPoint.default_format}",
                )
            assert os.path.exists(path)

    X, y = load_breast_cancer(return_X_y=True)
    m = xgb.DMatrix(X, y)
    # Check point to a temporary directory for demo
    with tempfile.TemporaryDirectory() as tmpdir:
        # Use callback class from xgboost.callback
        # Feel free to subclass/customize it to suit your need.
        check_point = xgb.callback.TrainingCheckPoint(
            directory=tmpdir, interval=rounds, name="model"
        )
        xgb.train(
            {"objective": "binary:logistic"},
            m,
            num_boost_round=10,
            verbose_eval=False,
            callbacks=[check_point],
        )
        check(False)

        # This version of checkpoint saves everything including parameters and
        # model.  See: doc/tutorials/saving_model.rst
        check_point = xgb.callback.TrainingCheckPoint(
            directory=tmpdir, interval=rounds, as_pickle=True, name="model"
        )
        xgb.train(
            {"objective": "binary:logistic"},
            m,
            num_boost_round=10,
            verbose_eval=False,
            callbacks=[check_point],
        )
        check(True)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--plot", default=1, type=int)
    args = parser.parse_args()

    check_point_callback()

    if args.plot:
        custom_callback()

参考

相关推荐
啊阿狸不会拉杆10 分钟前
数据结构-图
java·c语言·数据结构·c++·python·算法·图论
萧鼎26 分钟前
RAGFlow:构建高效检索增强生成流程的技术解析
人工智能·python
cooljser35 分钟前
告别手动操作!用脚本搞定小程序签到的全过程
python
凌叁儿1 小时前
从零开始搭建Django博客①--正式开始前的准备工作
python·django·sqlite
攻城狮7号2 小时前
Python爬虫第19节-动态渲染页面抓取之Splash使用下篇
开发语言·爬虫·python·python爬虫
天天进步20152 小时前
Python项目--基于计算机视觉的手势识别控制系统
开发语言·python·计算机视觉
MarsBighead2 小时前
Pgvector+R2R搭建RAG知识库
python·ai·postgresql·rag·pgvector
早睡早起吧3 小时前
目标检测篇---faster R-CNN
人工智能·python·目标检测·计算机视觉·cnn
Alive~o.03 小时前
【网络应用程序设计】实验四:物联网监控系统
linux·网络·python·物联网·课程设计
大模型真好玩3 小时前
RAG系统效果不达预期?一定要看看这篇详细高效的优化指南!
人工智能·python·mcp