XGB-25:Callback函数

本文档提供了XGBoost Python包中使用的回调API的基本概述。在XGBoost 1.3中,为Python包设计了一个新的回调接口,它为设计各种扩展提供了灵活性,用于训练。此外,XGBoost还预定义了许多回调函数,用于支持提前停止early stopping、检查点checkpoints等。

使用内置回调函数

默认情况下,XGBoost 中的训练方法具有参数,如 early_stopping_roundsverbose/verbose_eval,当指定这些参数时,训练过程将在内部定义相应的回调函数。例如,当指定了 early_stopping_rounds 时,EarlyStopping 回调将在迭代循环内调用。也可以直接将此回调函数传递给 XGBoost:

python 复制代码
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

import xgboost as xgb
import numpy as np

X, y = load_breast_cancer(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, stratify=y, random_state=94)

D_train = xgb.DMatrix(X_train, y_train)
D_valid = xgb.DMatrix(X_valid, y_valid)

# Define a custom evaluation metric used for early stopping.
def eval_error_metric(predt, dtrain: xgb.DMatrix):
    label = dtrain.get_label()
    r = np.zeros(predt.shape)
    gt = predt > 0.5
    r[gt] = 1 - label[gt]
    le = predt <= 0.5
    r[le] = label[le]
    return 'CustomErr', np.sum(r)

# Specify which dataset and which metric should be used for early stopping.
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
                                        metric_name='CustomErr',
                                        data_name='Train')

booster = xgb.train(
    {'objective': 'binary:logistic',
     'eval_metric': ['error', 'rmse'],
     'tree_method': 'hist'}, D_train,
    evals=[(D_train, 'Train'), (D_valid, 'Valid')],
    feval=eval_error_metric,
    num_boost_round=1000,
    callbacks=[early_stop],
    verbose_eval=False)

dump = booster.get_dump(dump_format='json')
assert len(early_stop.stopping_history['Train']['CustomErr']) == len(dump)

定义自己的回调函数

XGBoost提供了一个回调接口类:TrainingCallback,用户定义的回调应该继承这个类并覆盖相应的方法。在示例中有使用和定义回调函数的工作示例。

python 复制代码
import argparse
import os
import tempfile
from typing import Dict

import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

import xgboost as xgb


class Plotting(xgb.callback.TrainingCallback):
    """Plot evaluation result during training.  Only for demonstration purpose as it's
    quite slow to draw using matplotlib.

    """

    def __init__(self, rounds: int) -> None:
        self.fig = plt.figure()
        self.ax = self.fig.add_subplot(111)
        self.rounds = rounds
        self.lines: Dict[str, plt.Line2D] = {}
        self.fig.show()
        self.x = np.linspace(0, self.rounds, self.rounds)
        plt.ion()

    def _get_key(self, data: str, metric: str) -> str:
        return f"{data}-{metric}"

    def after_iteration(
        self, model: xgb.Booster, epoch: int, evals_log: Dict[str, dict]
    ) -> bool:
        """Update the plot."""
        if not self.lines:
            for data, metric in evals_log.items():
                for metric_name, log in metric.items():
                    key = self._get_key(data, metric_name)
                    expanded = log + [0] * (self.rounds - len(log))
                    (self.lines[key],) = self.ax.plot(self.x, expanded, label=key)
                    self.ax.legend()
        else:
            # https://pythonspot.com/matplotlib-update-plot/
            for data, metric in evals_log.items():
                for metric_name, log in metric.items():
                    key = self._get_key(data, metric_name)
                    expanded = log + [0] * (self.rounds - len(log))
                    self.lines[key].set_ydata(expanded)
            self.fig.canvas.draw()
        # False to indicate training should not stop.
        return False


def custom_callback() -> None:
    """Demo for defining a custom callback function that plots evaluation result during
    training."""
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

    D_train = xgb.DMatrix(X_train, y_train)
    D_valid = xgb.DMatrix(X_valid, y_valid)

    num_boost_round = 100
    plotting = Plotting(num_boost_round)

    # Pass it to the `callbacks` parameter as a list.
    xgb.train(
        {
            "objective": "binary:logistic",
            "eval_metric": ["error", "rmse"],
            "tree_method": "hist",
            "device": "cuda",
        },
        D_train,
        evals=[(D_train, "Train"), (D_valid, "Valid")],
        num_boost_round=num_boost_round,
        callbacks=[plotting],
    )


def check_point_callback() -> None:
    """Demo for using the checkpoint callback. Custom logic for handling output is
    usually required and users are encouraged to define their own callback for
    checkpointing operations. The builtin one can be used as a starting point.

    """
    # Only for demo, set a larger value (like 100) in practice as checkpointing is quite
    # slow.
    rounds = 2

    def check(as_pickle: bool) -> None:
        for i in range(0, 10, rounds):
            if i == 0:
                continue
            if as_pickle:
                path = os.path.join(tmpdir, "model_" + str(i) + ".pkl")
            else:
                path = os.path.join(
                    tmpdir,
                    f"model_{i}.{xgb.callback.TrainingCheckPoint.default_format}",
                )
            assert os.path.exists(path)

    X, y = load_breast_cancer(return_X_y=True)
    m = xgb.DMatrix(X, y)
    # Check point to a temporary directory for demo
    with tempfile.TemporaryDirectory() as tmpdir:
        # Use callback class from xgboost.callback
        # Feel free to subclass/customize it to suit your need.
        check_point = xgb.callback.TrainingCheckPoint(
            directory=tmpdir, interval=rounds, name="model"
        )
        xgb.train(
            {"objective": "binary:logistic"},
            m,
            num_boost_round=10,
            verbose_eval=False,
            callbacks=[check_point],
        )
        check(False)

        # This version of checkpoint saves everything including parameters and
        # model.  See: doc/tutorials/saving_model.rst
        check_point = xgb.callback.TrainingCheckPoint(
            directory=tmpdir, interval=rounds, as_pickle=True, name="model"
        )
        xgb.train(
            {"objective": "binary:logistic"},
            m,
            num_boost_round=10,
            verbose_eval=False,
            callbacks=[check_point],
        )
        check(True)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--plot", default=1, type=int)
    args = parser.parse_args()

    check_point_callback()

    if args.plot:
        custom_callback()

参考

相关推荐
用户835629078051几秒前
使用Python合并Word文档:实现高效自动化办公
后端·python
闭着眼睛学算法36 分钟前
【双机位A卷】华为OD笔试之【排序】双机位A-银行插队【Py/Java/C++/C/JS/Go六种语言】【欧弟算法】全网注释最详细分类最全的华子OD真题题解
java·c语言·javascript·c++·python·算法·华为od
Pocker_Spades_A1 小时前
Python快速入门专业版(五十四):爬虫基石:HTTP协议全解析(从请求到响应,附Socket模拟请求)
爬虫·python·http
DoubleKK1 小时前
Python 中的 json_repair 使用教程:轻松修复大模型返回的非法 JSON
python
萧鼎2 小时前
深入掌握 OpenCV-Python:从图像处理到智能视觉
图像处理·python·opencv
海琴烟Sunshine2 小时前
leetcode 190. 颠倒二进制位 python
python·算法·leetcode
淡忘_cx2 小时前
Dify Plugin 开发教程
python
海琴烟Sunshine2 小时前
leetcode 338. 比特位计数 python
python·算法·leetcode
呆萌很3 小时前
字典推导式练习题
python
闲人编程4 小时前
Python在云计算中的应用:AWS Lambda函数实战
服务器·python·云计算·aws·lambda·毕设·codecapsule