XGB-25:Callback函数

本文档提供了XGBoost Python包中使用的回调API的基本概述。在XGBoost 1.3中,为Python包设计了一个新的回调接口,它为设计各种扩展提供了灵活性,用于训练。此外,XGBoost还预定义了许多回调函数,用于支持提前停止early stopping、检查点checkpoints等。

使用内置回调函数

默认情况下,XGBoost 中的训练方法具有参数,如 early_stopping_roundsverbose/verbose_eval,当指定这些参数时,训练过程将在内部定义相应的回调函数。例如,当指定了 early_stopping_rounds 时,EarlyStopping 回调将在迭代循环内调用。也可以直接将此回调函数传递给 XGBoost:

python 复制代码
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

import xgboost as xgb
import numpy as np

X, y = load_breast_cancer(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, stratify=y, random_state=94)

D_train = xgb.DMatrix(X_train, y_train)
D_valid = xgb.DMatrix(X_valid, y_valid)

# Define a custom evaluation metric used for early stopping.
def eval_error_metric(predt, dtrain: xgb.DMatrix):
    label = dtrain.get_label()
    r = np.zeros(predt.shape)
    gt = predt > 0.5
    r[gt] = 1 - label[gt]
    le = predt <= 0.5
    r[le] = label[le]
    return 'CustomErr', np.sum(r)

# Specify which dataset and which metric should be used for early stopping.
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
                                        metric_name='CustomErr',
                                        data_name='Train')

booster = xgb.train(
    {'objective': 'binary:logistic',
     'eval_metric': ['error', 'rmse'],
     'tree_method': 'hist'}, D_train,
    evals=[(D_train, 'Train'), (D_valid, 'Valid')],
    feval=eval_error_metric,
    num_boost_round=1000,
    callbacks=[early_stop],
    verbose_eval=False)

dump = booster.get_dump(dump_format='json')
assert len(early_stop.stopping_history['Train']['CustomErr']) == len(dump)

定义自己的回调函数

XGBoost提供了一个回调接口类:TrainingCallback,用户定义的回调应该继承这个类并覆盖相应的方法。在示例中有使用和定义回调函数的工作示例。

python 复制代码
import argparse
import os
import tempfile
from typing import Dict

import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

import xgboost as xgb


class Plotting(xgb.callback.TrainingCallback):
    """Plot evaluation result during training.  Only for demonstration purpose as it's
    quite slow to draw using matplotlib.

    """

    def __init__(self, rounds: int) -> None:
        self.fig = plt.figure()
        self.ax = self.fig.add_subplot(111)
        self.rounds = rounds
        self.lines: Dict[str, plt.Line2D] = {}
        self.fig.show()
        self.x = np.linspace(0, self.rounds, self.rounds)
        plt.ion()

    def _get_key(self, data: str, metric: str) -> str:
        return f"{data}-{metric}"

    def after_iteration(
        self, model: xgb.Booster, epoch: int, evals_log: Dict[str, dict]
    ) -> bool:
        """Update the plot."""
        if not self.lines:
            for data, metric in evals_log.items():
                for metric_name, log in metric.items():
                    key = self._get_key(data, metric_name)
                    expanded = log + [0] * (self.rounds - len(log))
                    (self.lines[key],) = self.ax.plot(self.x, expanded, label=key)
                    self.ax.legend()
        else:
            # https://pythonspot.com/matplotlib-update-plot/
            for data, metric in evals_log.items():
                for metric_name, log in metric.items():
                    key = self._get_key(data, metric_name)
                    expanded = log + [0] * (self.rounds - len(log))
                    self.lines[key].set_ydata(expanded)
            self.fig.canvas.draw()
        # False to indicate training should not stop.
        return False


def custom_callback() -> None:
    """Demo for defining a custom callback function that plots evaluation result during
    training."""
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

    D_train = xgb.DMatrix(X_train, y_train)
    D_valid = xgb.DMatrix(X_valid, y_valid)

    num_boost_round = 100
    plotting = Plotting(num_boost_round)

    # Pass it to the `callbacks` parameter as a list.
    xgb.train(
        {
            "objective": "binary:logistic",
            "eval_metric": ["error", "rmse"],
            "tree_method": "hist",
            "device": "cuda",
        },
        D_train,
        evals=[(D_train, "Train"), (D_valid, "Valid")],
        num_boost_round=num_boost_round,
        callbacks=[plotting],
    )


def check_point_callback() -> None:
    """Demo for using the checkpoint callback. Custom logic for handling output is
    usually required and users are encouraged to define their own callback for
    checkpointing operations. The builtin one can be used as a starting point.

    """
    # Only for demo, set a larger value (like 100) in practice as checkpointing is quite
    # slow.
    rounds = 2

    def check(as_pickle: bool) -> None:
        for i in range(0, 10, rounds):
            if i == 0:
                continue
            if as_pickle:
                path = os.path.join(tmpdir, "model_" + str(i) + ".pkl")
            else:
                path = os.path.join(
                    tmpdir,
                    f"model_{i}.{xgb.callback.TrainingCheckPoint.default_format}",
                )
            assert os.path.exists(path)

    X, y = load_breast_cancer(return_X_y=True)
    m = xgb.DMatrix(X, y)
    # Check point to a temporary directory for demo
    with tempfile.TemporaryDirectory() as tmpdir:
        # Use callback class from xgboost.callback
        # Feel free to subclass/customize it to suit your need.
        check_point = xgb.callback.TrainingCheckPoint(
            directory=tmpdir, interval=rounds, name="model"
        )
        xgb.train(
            {"objective": "binary:logistic"},
            m,
            num_boost_round=10,
            verbose_eval=False,
            callbacks=[check_point],
        )
        check(False)

        # This version of checkpoint saves everything including parameters and
        # model.  See: doc/tutorials/saving_model.rst
        check_point = xgb.callback.TrainingCheckPoint(
            directory=tmpdir, interval=rounds, as_pickle=True, name="model"
        )
        xgb.train(
            {"objective": "binary:logistic"},
            m,
            num_boost_round=10,
            verbose_eval=False,
            callbacks=[check_point],
        )
        check(True)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--plot", default=1, type=int)
    args = parser.parse_args()

    check_point_callback()

    if args.plot:
        custom_callback()

参考

相关推荐
ACERT3339 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
韩立学长9 小时前
【开题答辩实录分享】以《基于python的奶茶店分布数据分析与可视化》为例进行答辩实录分享
开发语言·python·数据分析
2401_8315017310 小时前
Python学习之day03学习(文件和异常)
开发语言·python·学习
可触的未来,发芽的智生10 小时前
触摸未来2025.10.06:声之密语从生理构造到神经网络的声音智能革命
人工智能·python·神经网络·机器学习·架构
Zwb29979210 小时前
Day 24 - 文件、目录与路径 - Python学习笔记
笔记·python·学习
hui函数10 小时前
python全栈(基础篇)——day03:后端内容(字符串格式化+简单数据类型转换+进制的转换+运算符+实战演示+每日一题)
开发语言·后端·python·全栈
动能小子ohhh10 小时前
AI智能体(Agent)大模型入门【6】--编写fasteAPI后端请求接口实现页面聊天
人工智能·python·深度学习·ai编程
SCBAiotAigc11 小时前
huggingface里的数据集如何下载呢?
人工智能·python
AntBlack11 小时前
PyQtInspect : 推荐一个好用的 PythonQT 界面 Debug 工具
python·pyqt
flashlight_hi11 小时前
LeetCode 分类刷题:1901. 寻找峰值 II
python·算法·leetcode