python-pytorch实现lstm模型预测文本输出0.1.00

python-pytorch实现lstm模型预测文本输出0.1.00

有问题还需要完善

数据

一篇新闻:https://news.sina.com.cn/c/2024-04-12/doc-inarqiev0222543.shtml

参考

https://blog.csdn.net/qq_19530977/article/details/120936391

python 复制代码
# https://blog.csdn.net/qq_19530977/article/details/120936391

效果

python 复制代码
"""
布林肯国务卿
布林肯国务卿同王毅
布林肯国务卿同王毅主任
布林肯国务卿同王毅主任以及
布林肯国务卿同王毅主任以及其他
布林肯国务卿同王毅主任以及其他国家
布林肯国务卿同王毅主任以及其他国家敦促
布林肯国务卿同王毅主任以及其他国家敦促伊朗
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯国务卿
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯国务卿同王毅
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯国务卿同王毅主任
"""

导入包

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
from torch.autograd import Variable
import jieba

分词到数组

复制文章到txt文档

python 复制代码
allarray=[]
with open("./howtousercbow/data/news.txt",encoding="utf-8") as afterjieba:
    lines=afterjieba.readlines()
    print(lines)
    for line in lines:
        result=list(jieba.cut(line,False))
        for r in result:
            allarray.append(r.replace("\n",""))

allarray,len(allarray)
    

准备数数据

python 复制代码
word2index={one:i for i,one in enumerate(allarray)}
index2word={i:one for i,one in enumerate(allarray)}
word2index[" "]=len(allarray)-1
index2word[len(allarray)-1]=" "
word2index[" "]

查看频次

python 复制代码
from collections import Counter
Counter(allarray)

获取vacab

python 复制代码
vocab_size = len(allarray)
vocab_size

生成输入数据

python 复制代码
# 生成输入数据
batch_x = []
batch_y = []
window=1
seq_length=vocab_size
for i in range(seq_length - window + 1):
    x = word2index[allarray[i]]
    if i + window >= seq_length:
        y = word2index[" "]
    else:
        y = word2index[allarray[i + 1]]
    batch_x.append([x])
    batch_y.append(y)

# print(batch_x)
# print("=======")
# print(batch_y)
# print(45/0)


# 训练数据
batch_x, batch_y = Variable(torch.LongTensor(batch_x)), Variable(torch.LongTensor(batch_y))
 
# 参数
# vocab_size = len(letters)
embedding_size = 100
n_hidden = 32
batch_size = 10
num_classes = vocab_size
 
dataset = Data.TensorDataset(batch_x, batch_y)
loader = Data.DataLoader(dataset, batch_size, shuffle=True)
 
# 建立模型
class BiLSTM(nn.Module):
    def __init__(self):
        super(BiLSTM, self).__init__()
        self.word_vec = nn.Embedding(vocab_size, embedding_size)
        # bidirectional双向LSTM
        self.bilstm = nn.LSTM(embedding_size, n_hidden, 1, bidirectional=True)
        self.lstm = nn.LSTM(2 * n_hidden, 2 * n_hidden, 1, bidirectional=False)
        self.fc = nn.Linear(n_hidden * 2, num_classes)
 
    def forward(self, input):
        embedding_input = self.word_vec(input)
#         print("embedding_input",embedding_input,embedding_input.size())
        # 调换第一维和第二维度
        embedding_input = embedding_input.permute(1, 0, 2)
        bilstm_output, (h_n1, c_n1) = self.bilstm(embedding_input)
        lstm_output, (h_n2, c_n2)= self.lstm(bilstm_output)
        fc_out = self.fc(lstm_output[-1])
        return fc_out
 
model = BiLSTM()

训练

python 复制代码
print(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
 
# 训练
for epoch in range(300):
    cost = 0
    for input_batch, target_batch in loader:
        pred = model(input_batch)
#         print("pred",pred)
#         print("target_batch",target_batch)
        loss = criterion(pred, target_batch)
        cost += loss.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print("Epoch: %d,  loss: %.5f " % (epoch, cost))

测试

python 复制代码
def test(str):
    test_text =str
    test_batch = [word2index[str]]
#     print(test_batch)
    test_batch = torch.LongTensor([test_batch])
#     print("test_batch",test_batch)
#     print(test_batch)
    out = model(test_batch)
    predict = torch.max(out, 1)[1].item()
#     print(test_text,"后一个字母为:", index2word[predict])
    return index2word[predict]

连续预测

python 复制代码
import time
s="布林肯"
while True:
    fenci=jieba.cut(s,False)
    fenciList=list(fenci)
    s=s+test(fenciList[-1:][0])
    
    time.sleep(1)
    print(s)
        
相关推荐
wyiyiyi4 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
mit6.8245 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
没有bug.的程序员5 小时前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋5 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
AntBlack6 小时前
不当韭菜V1.1 :增强能力 ,辅助构建自己的交易规则
后端·python·pyqt
杜子不疼.8 小时前
《Python学习之字典(一):基础操作与核心用法》
开发语言·python·学习
myzzb9 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
TLuoQiu9 小时前
小电视视频内容获取GUI工具
爬虫·python
我叫黑大帅9 小时前
【CustomTkinter】 python可以写前端?😆
后端·python
胡耀超9 小时前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr