python-pytorch实现lstm模型预测文本输出0.1.00

python-pytorch实现lstm模型预测文本输出0.1.00

有问题还需要完善

数据

一篇新闻:https://news.sina.com.cn/c/2024-04-12/doc-inarqiev0222543.shtml

参考

https://blog.csdn.net/qq_19530977/article/details/120936391

python 复制代码
# https://blog.csdn.net/qq_19530977/article/details/120936391

效果

python 复制代码
"""
布林肯国务卿
布林肯国务卿同王毅
布林肯国务卿同王毅主任
布林肯国务卿同王毅主任以及
布林肯国务卿同王毅主任以及其他
布林肯国务卿同王毅主任以及其他国家
布林肯国务卿同王毅主任以及其他国家敦促
布林肯国务卿同王毅主任以及其他国家敦促伊朗
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯国务卿
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯国务卿同王毅
布林肯国务卿同王毅主任以及其他国家敦促伊朗驻叙利亚使馆的安全不容侵犯,布林肯国务卿同王毅主任
"""

导入包

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
from torch.autograd import Variable
import jieba

分词到数组

复制文章到txt文档

python 复制代码
allarray=[]
with open("./howtousercbow/data/news.txt",encoding="utf-8") as afterjieba:
    lines=afterjieba.readlines()
    print(lines)
    for line in lines:
        result=list(jieba.cut(line,False))
        for r in result:
            allarray.append(r.replace("\n",""))

allarray,len(allarray)
    

准备数数据

python 复制代码
word2index={one:i for i,one in enumerate(allarray)}
index2word={i:one for i,one in enumerate(allarray)}
word2index[" "]=len(allarray)-1
index2word[len(allarray)-1]=" "
word2index[" "]

查看频次

python 复制代码
from collections import Counter
Counter(allarray)

获取vacab

python 复制代码
vocab_size = len(allarray)
vocab_size

生成输入数据

python 复制代码
# 生成输入数据
batch_x = []
batch_y = []
window=1
seq_length=vocab_size
for i in range(seq_length - window + 1):
    x = word2index[allarray[i]]
    if i + window >= seq_length:
        y = word2index[" "]
    else:
        y = word2index[allarray[i + 1]]
    batch_x.append([x])
    batch_y.append(y)

# print(batch_x)
# print("=======")
# print(batch_y)
# print(45/0)


# 训练数据
batch_x, batch_y = Variable(torch.LongTensor(batch_x)), Variable(torch.LongTensor(batch_y))
 
# 参数
# vocab_size = len(letters)
embedding_size = 100
n_hidden = 32
batch_size = 10
num_classes = vocab_size
 
dataset = Data.TensorDataset(batch_x, batch_y)
loader = Data.DataLoader(dataset, batch_size, shuffle=True)
 
# 建立模型
class BiLSTM(nn.Module):
    def __init__(self):
        super(BiLSTM, self).__init__()
        self.word_vec = nn.Embedding(vocab_size, embedding_size)
        # bidirectional双向LSTM
        self.bilstm = nn.LSTM(embedding_size, n_hidden, 1, bidirectional=True)
        self.lstm = nn.LSTM(2 * n_hidden, 2 * n_hidden, 1, bidirectional=False)
        self.fc = nn.Linear(n_hidden * 2, num_classes)
 
    def forward(self, input):
        embedding_input = self.word_vec(input)
#         print("embedding_input",embedding_input,embedding_input.size())
        # 调换第一维和第二维度
        embedding_input = embedding_input.permute(1, 0, 2)
        bilstm_output, (h_n1, c_n1) = self.bilstm(embedding_input)
        lstm_output, (h_n2, c_n2)= self.lstm(bilstm_output)
        fc_out = self.fc(lstm_output[-1])
        return fc_out
 
model = BiLSTM()

训练

python 复制代码
print(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
 
# 训练
for epoch in range(300):
    cost = 0
    for input_batch, target_batch in loader:
        pred = model(input_batch)
#         print("pred",pred)
#         print("target_batch",target_batch)
        loss = criterion(pred, target_batch)
        cost += loss.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print("Epoch: %d,  loss: %.5f " % (epoch, cost))

测试

python 复制代码
def test(str):
    test_text =str
    test_batch = [word2index[str]]
#     print(test_batch)
    test_batch = torch.LongTensor([test_batch])
#     print("test_batch",test_batch)
#     print(test_batch)
    out = model(test_batch)
    predict = torch.max(out, 1)[1].item()
#     print(test_text,"后一个字母为:", index2word[predict])
    return index2word[predict]

连续预测

python 复制代码
import time
s="布林肯"
while True:
    fenci=jieba.cut(s,False)
    fenciList=list(fenci)
    s=s+test(fenciList[-1:][0])
    
    time.sleep(1)
    print(s)
        
相关推荐
ROBOT玲玉11 分钟前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy
Kai HVZ1 小时前
python爬虫----爬取视频实战
爬虫·python·音视频
古希腊掌管学习的神1 小时前
[LeetCode-Python版]相向双指针——611. 有效三角形的个数
开发语言·python·leetcode
m0_748244831 小时前
StarRocks 排查单副本表
大数据·数据库·python
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
路人甲ing..1 小时前
jupyter切换内核方法配置问题总结
chrome·python·jupyter
游客5201 小时前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
每天都要学信号2 小时前
Python(第一天)
开发语言·python
凡人的AI工具箱2 小时前
每天40分玩转Django:Django国际化
数据库·人工智能·后端·python·django·sqlite
咸鱼桨2 小时前
《庐山派从入门到...》PWM板载蜂鸣器
人工智能·windows·python·k230·庐山派