OLAP在线实时 数据分析平台

随着业务的增长,精细化运营的提出,产品对数据部门提出了更高的要求,包括需要对实时数据进行查询分析,快速调整运营策略;对小部分人群做 AB 实验,验证新功能的有效性;减少数据查询时间,降低数据查询难度,让非专业人员可以自主分析、探查数据等。为满足业务需求,MateApp 实现了集事件分析、转化分析、自定义留存、用户分群、行为流分析等功能于一体的 OLAP 数据分析平台。

这是一个典型的 OLAP 的架构 ,分成两部分,一部分是离线,一部分是实时。

  1. 在离线场景中,我们使用 DataX 把 Kafka 的数据集成到 Hive 数仓,再生成 BI 报表。BI 报表使用了 Superset
    组件来进行结果展示;
  2. 在实时场景中,一条线使用 GoSink 进行数据集成 ,把 GoSink 的数据集成到 ClickHouse ,另外一条线使用
    CnchKafka 把数据集成到 ByConity。最后通过 OLAP 查询平台获取数据进行查询。

ByConity 和 ClickHouse 功能对比

ByConity 是基于 ClickHouse 内核研发的开源云原生数据仓库,采用存算分离的架构。两者都具有以下特点:

  • 写入速度非常快,适用于大量数据的写入,写入数据量可达 50MB - 200MB/s
  • 查询速度非常快,在海量数据下,查询速度可达2-30GB/s 数据
  • 压缩比高,存储成本低,压缩比 可达 0.2~0.3

ByConity 拥有 ClickHouse 的优点,与 ClickHouse 保持了较好的兼容性,在读写分离、弹性扩缩容、数据强一致方面进行了增强。两者对于以下 OLAP 场景均适用:

  • 数据集可能很大 - 数十亿或数万亿行
  • 数据表中包含许多列
  • 仅查询特定几列
  • 结果必须以毫秒或秒为单位返回
相关推荐
爱吃泡芙的小白白11 小时前
环境数据多维关系探索利器:Pairs Plot 完全指南
python·信息可视化·数据分析·环境领域·pairs plot
莽撞的大地瓜12 小时前
洞察,始于一目了然——让舆情数据自己“说话”
大数据·网络·数据分析
AI职业加油站13 小时前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析
AAD555888991 天前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
fanstuck1 天前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
AAD555888991 天前
YOLOv8-MAN-Faster电容器缺陷检测:七类组件识别与分类系统
yolo·分类·数据挖掘
爱吃泡芙的小白白1 天前
环境数据可视化利器:Hexbin Chart 全解析与应用实战
信息可视化·数据挖掘·数据分析·环境领域·hexbin chart
爱吃泡芙的小白白1 天前
环境数据可视化利器:气泡图(Bubble Chart)全解析
信息可视化·数据挖掘·数据分析·气泡图·bubble chart·环境领域