基于机器学习的节日大促营销模型

基于机器学习来构建节日大促的营销模型,分为几个步骤:

1. 需求定义

跟业务确定需要建模的目标(预计圈选会员数),预计圈选时间以此确定模型交付时间,今年大促的活动周期(方便根据同个周期选取去年同个时间段的数据用于训练集),确定会员的口径范围和订单的口径范围。

2. 数据分析

根据1需求分析确定的内容,首先是进行训练集和预测集的数据分析,判断正负样本比是否满足条件,以及数据上是否有什么明显的特征

3. 构建训练集和预测集

根据1需求分析,需要构建特征和标签,例如选取五一大促作为建模目标,预计选取100w会员进行营销推送,时间是4月28日,那么同样选取2023年4月28日作为建模特征点,2023年4月29日到2023年5月3日为标签计算时间,以此为训练集。

特征方面,多挖掘一些RFM、会员等级、会员购买偏好的特征。

4. 模型训练

根据训练集特征和标签进行模型训练,一般是使用梯度提升决策树模型,具有一定的解释性,效果同时优于其他机器学习算法。记得划分出70%的训练集,30%的验证集。

复制代码
(
 learning_rate =0.1,
 n_estimators=100,
 max_depth=3,
 subsample=0.8,
 colsample_bytree=0.8,
 nthread=4,
 seed=27)

5. 模型评估

分析训练集和验证集的AUC,判断过拟合还是欠拟合,并且会看模型的特征重要性和概率分层的准确率和召回率、以及Lift提升度。

6. 业务评估

评估流程有两步:

(1)对比业务过往的圈人逻辑,用模型圈选同样会员等级同样会员数进行同等级对比,目标是证明模型在同等级同会员的情况下效果更好

(2)在确定1有效果后,根据业务过往的圈人逻辑圈选出同样的会员数,让模型自由的选取各等级的会员数,看效果提升能有多少

7. 效果复盘

在实际营销推送的时候,可以设置70%的算法模型实验组,30%的业务规则对比组,用来对比效果。

相关推荐
荼蘼6 分钟前
Dlib+OpenCV 人脸轮廓绘制
人工智能·opencv·计算机视觉
九河云9 分钟前
物流仓储自动化升级:物道供应链 AGV 机器人实现分拣效率提升 60%
人工智能·科技·物联网·机器人·自动化
正点原子15 分钟前
正点原子 x STM32:智能加速边缘AI应用开发!
人工智能·stm32·嵌入式硬件
金井PRATHAMA22 分钟前
GraphRAG(知识图谱结合大模型)对人工智能中自然语言处理的深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
CCSBRIDGE39 分钟前
Browser-Use 的实现原理
人工智能
愚公搬代码40 分钟前
【愚公系列】《人工智能70年》044-数据科学崛起(安全与隐私,硬币的另一面)
人工智能·安全
黄啊码42 分钟前
【黄啊码】AI总瞎编?不是BUG,而是天赋技能
人工智能
黄啊码1 小时前
【黄啊码】当内容成为“预制菜”,我们又该怎么办?
人工智能
黄啊码1 小时前
学完这节课,别再问我LLM是不是溜溜梅
人工智能
黄啊码1 小时前
【黄啊码】AI Coding正在让你平庸地付费上班
人工智能·ai编程