基于机器学习的节日大促营销模型

基于机器学习来构建节日大促的营销模型,分为几个步骤:

1. 需求定义

跟业务确定需要建模的目标(预计圈选会员数),预计圈选时间以此确定模型交付时间,今年大促的活动周期(方便根据同个周期选取去年同个时间段的数据用于训练集),确定会员的口径范围和订单的口径范围。

2. 数据分析

根据1需求分析确定的内容,首先是进行训练集和预测集的数据分析,判断正负样本比是否满足条件,以及数据上是否有什么明显的特征

3. 构建训练集和预测集

根据1需求分析,需要构建特征和标签,例如选取五一大促作为建模目标,预计选取100w会员进行营销推送,时间是4月28日,那么同样选取2023年4月28日作为建模特征点,2023年4月29日到2023年5月3日为标签计算时间,以此为训练集。

特征方面,多挖掘一些RFM、会员等级、会员购买偏好的特征。

4. 模型训练

根据训练集特征和标签进行模型训练,一般是使用梯度提升决策树模型,具有一定的解释性,效果同时优于其他机器学习算法。记得划分出70%的训练集,30%的验证集。

复制代码
(
 learning_rate =0.1,
 n_estimators=100,
 max_depth=3,
 subsample=0.8,
 colsample_bytree=0.8,
 nthread=4,
 seed=27)

5. 模型评估

分析训练集和验证集的AUC,判断过拟合还是欠拟合,并且会看模型的特征重要性和概率分层的准确率和召回率、以及Lift提升度。

6. 业务评估

评估流程有两步:

(1)对比业务过往的圈人逻辑,用模型圈选同样会员等级同样会员数进行同等级对比,目标是证明模型在同等级同会员的情况下效果更好

(2)在确定1有效果后,根据业务过往的圈人逻辑圈选出同样的会员数,让模型自由的选取各等级的会员数,看效果提升能有多少

7. 效果复盘

在实际营销推送的时候,可以设置70%的算法模型实验组,30%的业务规则对比组,用来对比效果。

相关推荐
七夜zippoe几秒前
轻量级模型实战:使用OpenLLM构建生产级大模型服务
大数据·人工智能·机器学习·架构·openllm
ar0123几秒前
AR眼镜赋能远程协作:效率与安全双提升
人工智能·ar
西格电力科技2 分钟前
光伏策略控制服务器如何成为电站智慧转型的中枢与关键一步?
运维·服务器·人工智能·分布式·能源
skywalk81633 分钟前
试试这个模型Qwen3-Coder-30B-A3B-Instruct
人工智能
2301_764441333 分钟前
跨城市人类移动行为预测
人工智能·机器学习·数学建模
前进的李工3 分钟前
AI安全威胁:对抗样本到数据隐私全解析(13种安全威胁及防护)
网络·人工智能·安全·语言模型·网络攻击模型
葡萄城技术团队9 分钟前
Wyn商业智能:问答式自助BI工具如何重塑企业数据分析模式?
人工智能·数据挖掘·数据分析
云霄星乖乖的果冻13 分钟前
02预备知识——李沐《动手学深度学习》个人笔记
人工智能·笔记·深度学习
工藤学编程13 分钟前
零基础学AI大模型之LangChain Retriever
人工智能·langchain
阿杰学AI16 分钟前
AI核心知识47——大语言模型之Data Cleaning(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·数据清洗·模型训练·data cleaning