基于机器学习的节日大促营销模型

基于机器学习来构建节日大促的营销模型,分为几个步骤:

1. 需求定义

跟业务确定需要建模的目标(预计圈选会员数),预计圈选时间以此确定模型交付时间,今年大促的活动周期(方便根据同个周期选取去年同个时间段的数据用于训练集),确定会员的口径范围和订单的口径范围。

2. 数据分析

根据1需求分析确定的内容,首先是进行训练集和预测集的数据分析,判断正负样本比是否满足条件,以及数据上是否有什么明显的特征

3. 构建训练集和预测集

根据1需求分析,需要构建特征和标签,例如选取五一大促作为建模目标,预计选取100w会员进行营销推送,时间是4月28日,那么同样选取2023年4月28日作为建模特征点,2023年4月29日到2023年5月3日为标签计算时间,以此为训练集。

特征方面,多挖掘一些RFM、会员等级、会员购买偏好的特征。

4. 模型训练

根据训练集特征和标签进行模型训练,一般是使用梯度提升决策树模型,具有一定的解释性,效果同时优于其他机器学习算法。记得划分出70%的训练集,30%的验证集。

复制代码
(
 learning_rate =0.1,
 n_estimators=100,
 max_depth=3,
 subsample=0.8,
 colsample_bytree=0.8,
 nthread=4,
 seed=27)

5. 模型评估

分析训练集和验证集的AUC,判断过拟合还是欠拟合,并且会看模型的特征重要性和概率分层的准确率和召回率、以及Lift提升度。

6. 业务评估

评估流程有两步:

(1)对比业务过往的圈人逻辑,用模型圈选同样会员等级同样会员数进行同等级对比,目标是证明模型在同等级同会员的情况下效果更好

(2)在确定1有效果后,根据业务过往的圈人逻辑圈选出同样的会员数,让模型自由的选取各等级的会员数,看效果提升能有多少

7. 效果复盘

在实际营销推送的时候,可以设置70%的算法模型实验组,30%的业务规则对比组,用来对比效果。

相关推荐
guoketg几秒前
Vision Transformer(ViT)的讲解和面试题目讲解
人工智能·python·深度学习·vit
Dontla1 分钟前
Mock Interview模拟面试,20260108,MNC第二面技术面,AI Engineer
人工智能·面试·职场和发展
小咖自动剪辑1 分钟前
免费超强图片压缩工具:批量操作 + 高效传输不失真
人工智能·音视频·语音识别·实时音视频·视频编解码
纠结哥_Shrek3 分钟前
不均衡分布原则进行选品
大数据·人工智能
北京耐用通信4 分钟前
耐达讯自动化“通关文牒”:Canopen转Profibus网关,贴片机的“协议通关秘籍”
人工智能·科技·网络协议·自动化·信息与通信
_codemonster6 分钟前
计算机视觉入门到实战系列(六)边缘检测sobel算子
人工智能·计算机视觉
杀生丸学AI7 分钟前
【平面重建】3D高斯平面:混合2D/3D光场重建(NeurIPS2025)
人工智能·平面·3d·大模型·aigc·高斯泼溅·空间智能
九河_8 分钟前
四元数 --> 双四元数
人工智能·四元数·双四元数
Gofarlic_oms19 分钟前
从手动统计到自动化:企业AutoCAD许可管理进化史
大数据·运维·网络·人工智能·微服务·自动化
叫我:松哥10 分钟前
基于 Flask 框架开发的在线学习平台,集成人工智能技术,提供分类练习、随机练习、智能推荐等多种学习模式
人工智能·后端·python·学习·信息可视化·flask·推荐算法