【一分钟快学】最通俗的各种神经网络结构的应用与优势对比

最近一直在研究神经网络相关的知识。通过一段时间的学习,我感觉需要总结一下神经网络相关模型的优缺点以及适用的场景。

不要觉得神经网络很难学,实际上学进去还是比较容易的。只要理解一些基础公式和工作原理,基本上都是相通的。

下面是我最近学习总结的模型特点和对比关系,也是为了以后继续学习做铺垫。这些模型都是在神经网络上应用的,可以看作是上层建筑。所以,只有在学好神经网络之后,才能理解这些模型,否则可能会一头雾水。

常见的神经网络模型对比表:

神经网络类型 解决的问题 适用场景 特点与异同
全连接神经网络 (ANN) 一般预测与分类问题 图像识别初级阶段,文本分类 基础的神经网络,每个神经元与前后层所有神经元相连
卷积神经网络 (CNN) 图像相关问题 图像识别,视频分析,医学图像分析 利用卷积核提取空间特征,减少参数量,适合处理图像
循环神经网络 (RNN) 顺序数据问题 语音识别,自然语言处理,时间序列分析 能处理序列数据,参数共享,处理时间相关性信息
长短期记忆网络 (LSTM) 长序列依赖问题 长文本生成,复杂语句翻译,高级语音识别 改进的RNN,有门控制机制,解决梯度消失问题
生成对抗网络 (GAN) 生成新的数据样本 图像合成,艺术创作,数据增强 由生成器和判别器组成,通过对抗过程提高生成质量
变分自编码器 (VAE) 生成新的数据样本和特征学习 图像重建,去噪,内容生成 利用概率编码和解码过程,理论基础较GAN更严谨
自注意力网络 (SAN) 复杂关系和长距离依赖的理解 大规模文本处理(如Transformer),图像分割等 利用注意力机制,能够更灵活地捕捉数据间的关系
相关推荐
mit6.8245 分钟前
PyTorch & Transformers| Azure
人工智能
程序员陆通7 分钟前
OpenAI Dev Day 2025:AI开发新纪元的全面布局
人工智能
新兴ICT项目支撑7 分钟前
BERT文本分类超参数优化实战:从13小时到83秒的性能飞跃
人工智能·分类·bert
真智AI11 分钟前
小模型大智慧:新一代轻量化语言模型全解析
人工智能·语言模型·自然语言处理
小关会打代码37 分钟前
深度学习之YOLO系列YOLOv1
人工智能·深度学习·yolo
大山同学39 分钟前
CNN手写数字识别minist
人工智能·神经网络·cnn
道可云1 小时前
道可云人工智能每日资讯|2025世界智能网联汽车大会将在北京举办
人工智能·百度·汽车·ar·xr·deepseek
一车小面包1 小时前
Transformer Decoder 中序列掩码(Sequence Mask / Look-ahead Mask)
人工智能·深度学习·transformer
JY190641061 小时前
徕卡RTC360助力铝单板设计效率提升
人工智能