【深度学习】Fine-Grained Face Swapping via Regional GAN Inversion高保真换脸范式

文章目录

代码

https://github.com/e4s2022/e4s

介绍

Fine-Grained Face Swapping via Regional GAN Inversion

提出一种新的高保真换脸范式,能够保留期望的微妙几何和纹理细节。从微观面部编辑的角度重新思考换脸任务,基于"编辑用于互换(editing for swapping)"(E4S)的原则,提出了一种基于面部组件形状和纹理的显式解耦方法。

遵循E4S原则,实现面部特征的全局和局部互换,以及由用户指定的部分互换。此外,E4S范式通过面部遮罩固有地处理面部遮挡问题。核心是一种新的区域GAN逆映射(RGI)方法,它允许显式解耦形状和纹理,同时允许在StyleGAN的潜在空间中进行面部互换。具体来说,设计了一个多尺度遮罩引导编码器,将每个面部组件的纹理投影到区域样式码中。还设计了一个遮罩引导注入模块,用样式码操作特征映射。基于解耦,面部互换被重新制定为样式和遮罩互换的简化问题。

与现有技术的大量实验和比较表明,方法在保留纹理和形状细节方面以及处理高分辨率图像方面具有优越性。项目页面地址为https://e4s2022.github.io

实践

设置好这2个参数后,执行python face_swap.py

效果

感觉不太好的效果:



帮助、问询

cpp 复制代码
https://docs.qq.com/sheet/DUEdqZ2lmbmR6UVdU?tab=BB08J2
相关推荐
Hui Baby12 分钟前
推理引擎vLLM & TensorRT
人工智能
icestone200016 分钟前
使用Cursor开发大型项目的技巧
前端·人工智能·ai编程
csdn_life1816 分钟前
训练式推理:算力通缩时代下下一代AI部署范式的创新与落地
人工智能·深度学习·机器学习
Coding茶水间21 分钟前
基于深度学习的猪识别系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测
志栋智能33 分钟前
AI驱动的安全自动化机器人:从“告警疲劳”到“智能免疫”的防御革命
运维·人工智能·安全·机器人·自动化
X54先生(人文科技)41 分钟前
启蒙灯塔起源团预言—碳硅智能时代到来
人工智能·python·机器学习·语言模型
志栋智能1 小时前
自动化运维真的只能选复杂平台吗?
运维·网络·数据库·人工智能·自动化
AC赳赳老秦1 小时前
低代码AI化革命:DeepSeek引领智能开发新纪元
网络·人工智能·安全·web安全·低代码·prometheus·deepseek
波动几何1 小时前
市场几何动力学:价格运动三大定律与牛顿范式革命
人工智能
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2026-02-17
大数据·数据库·人工智能·经验分享·搜索引擎