【PyTorch Lightning】.ckpt 是什么?里面有什么?

  1. 什么是检查点(checkpoint, ckpt)?

当模型在训练过程中时,随着其不断接收更多数据,其性能也会发生变化。在训练过程中保存模型的状态是一种最佳实践。这样可以在开发模型的过程中,在每个关键点上获得模型的一个版本,即一个检查点。一旦训练完成,您可以使用在训练过程中找到的性能最佳的检查点。

检查点还使得训练在中断的情况下可以从中断的地方恢复。

PyTorch Lightning 检查点在普通的 PyTorch 中完全可用。

  1. .ckpt 检查点文件里面有什么?

一个 Lightning 检查点包含了模型的整个内部状态的转储。与普通的 PyTorch 不同,Lightning 保存了你在最复杂的分布式训练环境中恢复模型所需的一切。

在 Lightning 检查点中,您会找到:

  • 16 位精度训练的缩放因子(如果使用 16 位精度训练)
  • 当前的 epoch
  • 全局步数
  • LightningModule 的 state_dict
  • 所有优化器的状态
  • 所有学习率调度器的状态
  • 所有回调函数的状态(用于有状态回调函数)
  • 数据模块的状态(用于有状态数据模块)
  • 用于创建模型的超参数(初始参数)
  • 用于创建数据模块的超参数(初始参数)
  • 循环的状态
  1. state_dict 是什么?

nn.Module 的模型权重,具体使用方法如下。

Lightning checkpoints 完全兼容普通的 torch nn.Modules。

python 复制代码
checkpoint = torch.load(CKPT_PATH)
print(checkpoint.keys())

例如,假设像下面这样创建了一个 LightningModule:

python 复制代码
class Encoder(nn.Module):
    ...


class Decoder(nn.Module):
    ...


class Autoencoder(L.LightningModule):
    def __init__(self, encoder, decoder, *args, **kwargs):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder


autoencoder = Autoencoder(Encoder(), Decoder())

一旦autoencoder训练完成,就可以提取出与 torch nn.Module 相关的权重。

python 复制代码
checkpoint = torch.load(CKPT_PATH)
encoder_weights = {k: v for k, v in checkpoint["state_dict"].items() if k.startswith("encoder.")}
decoder_weights = {k: v for k, v in checkpoint["state_dict"].items() if k.startswith("decoder.")}

官方文档:https://lightning.ai/docs/pytorch/stable/common/checkpointing_basic.html

相关推荐
这张生成的图像能检测吗9 小时前
(论文速读)GraphSAGE:大型图的归纳表示学习
人工智能·深度学习·机器学习·图神经网络·无监督学习
维度攻城狮13 小时前
ros2参数通信案例
开发语言·windows·python·ros2·参数通信
深圳佛手13 小时前
不用智能体开发框架,如何调用工具?
前端·python
清水白石00814 小时前
Python 与尾递归:为何不优化?如何优雅绕过?
开发语言·python
zhengfei61114 小时前
AI渗透工具——AI驱动的自动化渗透测试框架 | 基于 Model Context Protocol (MCP) 架构
人工智能·架构·自动化
王大傻092814 小时前
使用python for循环与ord() + chr()实现字符串加密
开发语言·python
袁庭新14 小时前
2025年终总结,智启
人工智能·aigc
540_54014 小时前
ADVANCE Day35
人工智能·python·深度学习
百***074514 小时前
Claude Opus 4.5 场景化实战指南:全链路赋能开发,提升效率翻倍
人工智能·gpt·开源
DeepVis Research14 小时前
【2025深度学习全家桶】Android Studio Otter + CUDA 11.8/12.1 离线安装包 | AI开发环境一键搞定
pytorch·深度学习·android studio·cuda·stablediffusion