【PyTorch Lightning】.ckpt 是什么?里面有什么?

  1. 什么是检查点(checkpoint, ckpt)?

当模型在训练过程中时,随着其不断接收更多数据,其性能也会发生变化。在训练过程中保存模型的状态是一种最佳实践。这样可以在开发模型的过程中,在每个关键点上获得模型的一个版本,即一个检查点。一旦训练完成,您可以使用在训练过程中找到的性能最佳的检查点。

检查点还使得训练在中断的情况下可以从中断的地方恢复。

PyTorch Lightning 检查点在普通的 PyTorch 中完全可用。

  1. .ckpt 检查点文件里面有什么?

一个 Lightning 检查点包含了模型的整个内部状态的转储。与普通的 PyTorch 不同,Lightning 保存了你在最复杂的分布式训练环境中恢复模型所需的一切。

在 Lightning 检查点中,您会找到:

  • 16 位精度训练的缩放因子(如果使用 16 位精度训练)
  • 当前的 epoch
  • 全局步数
  • LightningModule 的 state_dict
  • 所有优化器的状态
  • 所有学习率调度器的状态
  • 所有回调函数的状态(用于有状态回调函数)
  • 数据模块的状态(用于有状态数据模块)
  • 用于创建模型的超参数(初始参数)
  • 用于创建数据模块的超参数(初始参数)
  • 循环的状态
  1. state_dict 是什么?

nn.Module 的模型权重,具体使用方法如下。

Lightning checkpoints 完全兼容普通的 torch nn.Modules。

python 复制代码
checkpoint = torch.load(CKPT_PATH)
print(checkpoint.keys())

例如,假设像下面这样创建了一个 LightningModule:

python 复制代码
class Encoder(nn.Module):
    ...


class Decoder(nn.Module):
    ...


class Autoencoder(L.LightningModule):
    def __init__(self, encoder, decoder, *args, **kwargs):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder


autoencoder = Autoencoder(Encoder(), Decoder())

一旦autoencoder训练完成,就可以提取出与 torch nn.Module 相关的权重。

python 复制代码
checkpoint = torch.load(CKPT_PATH)
encoder_weights = {k: v for k, v in checkpoint["state_dict"].items() if k.startswith("encoder.")}
decoder_weights = {k: v for k, v in checkpoint["state_dict"].items() if k.startswith("decoder.")}

官方文档:https://lightning.ai/docs/pytorch/stable/common/checkpointing_basic.html

相关推荐
EkihzniY1 天前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通1 天前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
程序员小远1 天前
软件测试之单元测试详解
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
心无旁骛~1 天前
python多进程和多线程问题
开发语言·python
铅笔侠_小龙虾1 天前
深度学习理论推导--梯度下降法
人工智能·深度学习
星云数灵1 天前
使用Anaconda管理Python环境:安装与验证Pandas、NumPy、Matplotlib
开发语言·python·数据分析·pandas·教程·环境配置·anaconda
kaikaile19951 天前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1231 天前
第1章_LangGraph的背景与设计哲学
人工智能
计算机毕设匠心工作室1 天前
【python大数据毕设实战】青少年抑郁症风险数据分析可视化系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习
后端·python
计算机毕设小月哥1 天前
【Hadoop+Spark+python毕设】智能制造生产效能分析与可视化系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql