[阅读笔记1][GPT-3]Language Models are Few-Shot Learners

首先讲一下GPT3这篇论文,文章标题是语言模型是小样本学习者,openai于2020年发表的。

这篇是在GPT2的基础上写的,由于GPT2还存在一些局限,这篇对之前的GPT2进行了一些完善。GPT2提出了多任务学习,也就是可以零样本地用在各个下游任务,不需要再进行微调了,这与Bert的思路差别很大。但是GPT2的结果没有特别出色,只是比部分有监督的模型高了一点,大概处在一个平均水平。

GPT3仍然沿用了2的思路,然后将模型扩大了一百倍,模型具有1750亿个参数。另外在处理任务时提供了少量带标签的样本供模型学习,不过这里并没有用这些样本微调模型,仅仅是作为prompt输入给模型。可以看到大模型和few-shot带来的提升都是巨大的。

以Bert为代表的预训练-微调范式存在一些问题,首先就是数据集,对于每个细分任务都需要带标注的数据集来微调,这个代价是很大的。第二点就是泛化性不好,因为只能应用于微调的那些任务。第三点是和人类进行类比,比如情感分析,人类不需要看完整个数据集,只需要看少量的几个例子就能学会。所以few-shot相比微调更符合人类行为。

接下来就是展示了一下GPT3使用的zero-shot、one-shot、few-shot与微调的区别。

左侧是微调的过程,右侧就是gpt3提出的方法,不需要进行梯度更新。

模型结构使用的类似GPT2,有一些改进,比如使用了稀疏transformer,类似于空洞卷积,这样模型能尽可能轻量一些。但即使这样,整个模型还是非常大的。

最后是模型的结果,左边的图可以看到模型越大损失越小,并且要想损失线性的下降需要模型规模指数级增大。右边的图是在lambada数据集上的结果,这里one-shot不如zero-shot结果,作者给出的解释是只给一个示例的话,模型还没有充分学习到这种交互方式,可能认为给的不是一个任务示例,而是一句普通的文本,从而干扰了正常的推理。

相关推荐
元让_vincent12 分钟前
论文Review 3DGSSLAM GauS-SLAM: Dense RGB-D SLAM with Gaussian Surfels
图像处理·人工智能·平面·3d·图形渲染
武子康14 分钟前
AI炼丹日志-30-新发布【1T 万亿】参数量大模型!Kimi‑K2开源大模型解读与实践
人工智能·gpt·ai·语言模型·chatgpt·架构·开源
DKPT27 分钟前
Java设计模式之行为型模式(命令模式)介绍与说明
java·笔记·学习·设计模式
学习的学习者29 分钟前
CS课程项目设计1:交互友好的井字棋游戏
人工智能·课程设计·井字棋游戏
Jenny43 分钟前
数据预处理与清洗
人工智能
LucianaiB43 分钟前
AI 时代的分布式多模态数据处理实践:我的 ODPS 实践之旅、思考与展望
大数据·数据仓库·人工智能·分布式·odps
阿里云大数据AI技术1 小时前
如何在 Elasticsearch 中构建你的智能 AI 助手?
运维·人工智能·elasticsearch
yingtianhaoxuan1 小时前
学习笔记-Excel统计分析——描述统计量的计算
笔记·学习
Hao想睡觉1 小时前
机器学习之逻辑回归和k-means算法(六)
人工智能·算法·机器学习·逻辑回归
贾全1 小时前
从LLM到VLM:视觉语言模型的核心技术与Python实现
人工智能·python·ai·机器人·视觉语言模型·vlm