吴恩达机器学习笔记:第 7 周-12支持向量机(Support Vector Machines)12.4-12.6

目录

  • [第 7 周 12、 支持向量机(Support Vector Machines)](#第 7 周 12、 支持向量机(Support Vector Machines))
    • [12.4 核函数 1](#12.4 核函数 1)

第 7 周 12、 支持向量机(Support Vector Machines)

12.4 核函数 1

回顾我们之前讨论过可以使用高级数的多项式模型来解决无法用直线进行分隔的分类

问题:

为了获得上图所示的判定边界,我们的模型可能是 θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 x 2 + θ 4 x 1 2 + θ 5 x 2 2 + ⋯ θ_0 + θ_1x_1 + θ_2x_2 + θ_3x_1x_2 + θ_4x_1^2 +θ_5x_2^2 + ⋯ θ0+θ1x1+θ2x2+θ3x1x2+θ4x12+θ5x22+⋯的形式。

我们可以用一系列的新的特征 f 来替换模型中的每一项。例如令: f 1 = x 1 , f 2 = x 2 , f 3 = x 1 x 2 , f 4 = x 1 2 , f 5 = x 2 2 . . . f_1 = x_1, f_2 = x_2, f_3 =x_1x_2, f_4 = x_1^2, f_5 = x_2^2... f1=x1,f2=x2,f3=x1x2,f4=x12,f5=x22...得到ℎ𝜃(𝑥) = θ 1 f 1 + θ 2 f 2 + . . . + θ n f n θ_1f_1 + θ_2f_2+. . . +θ_nf_n θ1f1+θ2f2+...+θnfn。然而,除了对原有的特征进行组合以外,有没有更好的方法来构造𝑓1, 𝑓2, 𝑓3?我们可以利用核函数来计算出新的特征。

给定一个训练实例 𝑥 ,我们利用 𝑥 的各个特征与我们预先选定的地标(landmarks) l ( 1 ) , l ( 2 ) , l ( 3 ) l^{(1)}, l^{(2)}, l^{(3)} l(1),l(2),l(3)的近似程度来选取新的特征 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3。

上例中的𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦( x , l ( 1 ) x, l^{(1)} x,l(1))就是核函数,具体而言,这里是一个高斯核函数(Gaussian Kernel)。注:这个函数与正态分布没什么实际上的关系,只是看上去像而已。

这些地标的作用是什么?如果一个训练实例𝑥与地标𝐿之间的距离近似于 0,则新特征 f 近似于 e − 0 = 1 e^{−0}= 1 e−0=1,如果训练实例𝑥与地标𝐿之间距离较远,则𝑓近似于 e − ( 一个较大的数 ) e^{−(一个较大的数) } e−(一个较大的数)= 0。

假设我们的训练实例含有两个特征[ x 1 x 2 x_1 x_2 x1x2],给定地标 l ( 1 ) l^{(1)} l(1)与不同的𝜎值,见下图:

图中水平面的坐标为 x 1 , x 2 x_1,x_2 x1,x2而垂直坐标轴代表𝑓。可以看出,只有当𝑥与 l ( 1 ) l^{(1)} l(1)重合时f才具有最大值。随着𝑥的改变𝑓值改变的速率受到 σ 2 σ^2 σ2的控制。

在下图中,当实例处于洋红色的点位置处,因为其离 l ( 1 ) l^{(1)} l(1)更近,但是离 l ( 2 ) l^{(2)} l(2)和 l ( 3 ) l^{(3)} l(3)较远,因此 f 1 f_1 f1接近 1,而 f 2 , f 3 f_2,f_3 f2,f3接近 0。因此ℎ𝜃(𝑥) = θ_0 + θ_1f_1 + θ_2f_2 +θ_3f_3 > 0,因此预测𝑦 = 1。同理可以求出,对于离l^{(2)}$较近的绿色点,也预测𝑦 = 1,但是对于蓝绿色的点,因为其离三个地标都较远,预测𝑦 = 0。

这样,图中红色的封闭曲线所表示的范围,便是我们依据一个单一的训练实例和我们选取的地标所得出的判定边界,在预测时,我们采用的特征不是训练实例本身的特征,而是通过核函数计算出的新特征 f 1 , f 2 , f 3 f_1, f_2, f_3 f1,f2,f3。

相关推荐
dundunmm1 小时前
机器学习之scikit-learn(简称 sklearn)
python·算法·机器学习·scikit-learn·sklearn·分类算法
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
m0_748256782 小时前
WebGIS实战开源项目:智慧机场三维可视化(学习笔记)
笔记·学习·开源
红色的山茶花2 小时前
YOLOv9-0.1部分代码阅读笔记-loss.py
笔记
Schwertlilien2 小时前
图像处理-Ch5-图像复原与重建
c语言·开发语言·机器学习
南七澄江3 小时前
各种网站(学习资源及其他)
开发语言·网络·python·深度学习·学习·机器学习·ai
胡西风_foxww4 小时前
【es6复习笔记】Promise对象详解(12)
javascript·笔记·es6·promise·异步·回调·地狱
IT古董6 小时前
【漫话机器学习系列】014.贝叶斯法则(Bayes Theorem)
人工智能·机器学习
Crossoads7 小时前
【汇编语言】端口 —— 「从端口到时间:一文了解CMOS RAM与汇编指令的交汇」
android·java·汇编·深度学习·网络协议·机器学习·汇编语言
机智的叉烧9 小时前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习