ExpressLRS硬件实测性能分析

ExpressLRS硬件实测性能分析

  • [1. 源由](#1. 源由)
  • [2. 远航测试](#2. 远航测试)
  • [3. 实验室测试](#3. 实验室测试)
    • [3.1 芯片RSSI与实测功率差异](#3.1 芯片RSSI与实测功率差异)
    • [3.2 SNR信噪比稳定](#3.2 SNR信噪比稳定)
    • [3.3 140db衰减器衰减,40个频点信号稳定](#3.3 140db衰减器衰减,40个频点信号稳定)
  • [4. 外场测试](#4. 外场测试)
    • [4.1 无屏蔽样品](#4.1 无屏蔽样品)
    • [4.2 有屏蔽样品](#4.2 有屏蔽样品)
    • [4.3 有屏蔽vs无屏蔽样品](#4.3 有屏蔽vs无屏蔽样品)
  • [5. 估算](#5. 估算)
  • [6. 总结](#6. 总结)
  • [7. 补充说明 -- 50mW视频](#7. 补充说明 -- 50mW视频)

1. 源由

在ELRS方面做了不少工作,做一个收尾的整理和总结。

  1. 软件工程方面要点
  1. 硬件接口定义
  1. 控制链路性能方面

在基础上,做了一些实测和对比分析,期望通过这个来解释远航时的注意事项。

2. 远航测试

通过OSD现实,可以看出当芯片上报RSSI为-92 dBm时,发生信号丢失直线距离2.46km。

BetaFlight Mark4 + 十里琅珰 + ELRS3.0 + 500mW

而实际情况并非单一的RSSI信号强度不够导致的信号丢失。

3. 实验室测试

同类型的模块进行了实验室测试,参考:ExpressLRS开源之RC链路性能测试,发现几个非常有意思的现象。

不管有没有用,先摆几张关于信号判别用的一些数据和图谱(高人帮忙点评和指点!!!):

  • Radio link can be considered has GOOD when RSSI > -115dB and SNR > -7dB
  • Radio link is BAD (range limit) when RSSI <= -120 dB or SNR <= -13dB
  • Between this 2 cases,

3.1 芯片RSSI与实测功率差异

  1. 芯片RSSI值,在实际功率-80dBm之前还能相对比较好的有一致性
  2. 当低于实际功率-80dBm时,芯片RSSI值趋于一个平直状态
  3. 衰减到实际-148dBm时,芯片RSSI值为-81dBm,有较大的差距


结合前面实测-92dBm是信号丢失,这张表格如果用来做芯片RSSI值的表征,还是非常靠谱的。

3.2 SNR信噪比稳定

  1. 实验室环境(2.4G/5.8G,衰减器测试),SNR稳定在15db左右
  2. 信号强度始终高于噪音强度,且稳定

注:图中数据经过分析,采用对数方式展示。

3.3 140db衰减器衰减,40个频点信号稳定

  1. RSSI标准差与SNR标准差基本成正态分布
  2. SNR信噪比平均值2.5稳定(实验室环境,信号就是好)
  3. 40个频点,抗干扰能力强
  4. 【本次】传统ELRS单发单收天线
  5. 【后续】Diversity ELRS将会是两根天线(选择信号优的)
  6. 【后续】True Diversity ELR将会是两根天线(同时双收)
  7. 【后续】Gemini ELRS将会是双频(两个频率,分别天线双发)


4. 外场测试

模块采用如下方式,铝箔+地线隔离。

测试:1米-200米-400米-600米-800米 //400米测试点后,有雨影响

注:起点为接收机未知,因此全程测试过程接收机未发生移动。T型天线是正对保持相对姿势。

4.1 无屏蔽样品

  1. 信噪比随距离增加显著降低
  2. 200米以后,出现噪音强度超过信号强度
  3. LORA信号强度低于噪音依然可以解析信号,800米处-10db左右

4.2 有屏蔽样品

  1. 信噪比随距离增加显著降低
  2. 200米以后,出现噪音强度超过信号强度
  3. LORA信号强度低于噪音依然可以解析信号,800米处低于-15db左右

4.3 有屏蔽vs无屏蔽样品

  1. 信噪比随距离增加显著降低趋势一致
  2. 200米以后,出现噪音强度超过信号强度
  3. 有屏蔽信号比无屏蔽信号的信噪比更差(接地未起到好的效果,反而更差)
  4. 信号强度RSSI远端基本一致,由于底噪的增加,降低了信噪比,导致信号的恶化
  5. 怀疑600、800米数据受下雨干扰导致信号接收强度反而比400米好

注:因此测试过程一定要做好测试环境、测试步骤、测试记录等准备工作,若不做好,很容易导致数据的不可靠,甚至浪费测试时间。

5. 估算

假设:

  • 3dbi 天线(发射端/接收端)
  • 1.5米高度(发射端/接收端)
  • 915MHz频率
  • 10mW/9.73dbm发射功率
  • 接受端灵敏度-148dBm
  • 底噪:5/10/15/20dB

理论上,应该在2915/2186/1639/1229米时达到极值。

注:实际上很多朋友觉得这些测试尤其是实验室数据有什么用呢。而且实际10mW能飞很远,远不止这里估算的距离。其实具备一定实践经验所提及的这些情况也都正确。唯一也请注意高度的问题,通常来说飞得远高度越高,但是测试的话就要注意着点,要确保高度,详见:Antenna Height and Communications Effectiveness。每个人过滤信息的能力就像筛子一样,有些人能抓住重点,有些能抓住很多细节,而有些可能只有零星的几点。为什么会这样,其实也体现了对该技术问题内部深层逻辑的理解和理论知识背景。

因此,通常在有点干扰的环境,10mW能飞1.5 ~ 2km应该就非常不错了。

当然,如果您有幸在广袤的草原等一望无际,没有干扰的地方飞,那估计能飞到极限!!!记得给我视频链接哦~~~

6. 总结

功率与距离的平方成反比,因此前面500mW(怀疑是50mW,Dynamic可能没有起效果)飞行2.46km:

  • 假设1:dynamic是起效果了,按照500mW计算可得:

10 m W 500 m W = 1 R 2 1 2.46 k m \frac {10mW} {500mW} = \frac{\frac 1 {R^2}} { \frac 1 {2.46km}} 500mW10mW=2.46km1R21

R = 347 m R = 347 m R=347m

  • 假设2:dynamic未起效果了,按照50mW计算可得:

10 m W 50 m W = 1 R 2 1 2.46 k m \frac {10mW} {50mW} = \frac{\frac 1 {R^2}} { \frac 1 {2.46km}} 50mW10mW=2.46km1R21

R = 1100 m R = 1100 m R=1100m

从实际情况看,该模块在当时环境,从计算角度看,个人更偏向假设2的结论(后续补充说明 - 50mW视频)。

注:第二次50mW视频还只飞了2km,因此,本地(发射端附近有基站)存在一些干扰信号或者其他未知原因。因为915MHz处于ISM以及通信带宽范围。

7. 补充说明 -- 50mW视频

BetaFlight Mark4 + 十里琅珰 + 50mW测距

相关推荐
lida20031 年前
ExpressLRS开源之RC链路性能测试
开源·elrs
lida20031 年前
ExpressLRS开源代码之发射机代码框架结构
开源·elrs
lida20031 年前
ExpressLRS开源代码之框架结构
开源·elrs
lida20031 年前
ExpressLRS开源代码之工程结构
开源·elrs