VideoGPT:Video Generation using VQ-VAE and Transformers

1.introduction

对于视频展示,选择哪种模型比较好?基于似然->transformers自回归。在没有空间和时间溶于的降维潜在空间中进行自回归建模是否优于在所有空间和时间像素级别上的建模?选择前者:自然图像和视频包括了大量的空间和时间冗余,这些冗余可以通过学习高分辨率输入的去噪降维编码来消除,例如,空间和时间维度上的4倍降采样会导致64倍的分辨率降低,在潜在空间建模,不是像素空间,可以提高采样速度和计算需求。VideoGPT是基于VQVAE和GPT的视频生成架构,

VideoGPT利用3D conv和transposed conv along with axial attention,在VQVAE中的编码器中学习从视频帧原始像素中获取降维离散潜在值,利用GPT进行自回归。

2.VideoGPT

2.1 learning latent code

第一阶段:为了学习一组离散的潜在code,首先在视频数据上训练一个VQVAE,编码器结构包括一系列在时空维度上进行下采样的3D卷积,如图所示,

2.2 learning a prior

第二阶段:Image-GPT,学习第一阶段VQVAE潜在code的先验。

3.Experiments

3.1 Training details

所有的图像数据在训练前被缩放在-0.5-0.5之间,训练64x64的视频,长度是16.

相关推荐
空白诗2 天前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
学易2 天前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
心疼你的一切3 天前
基于CANN仓库算力手把手实现Stable Diffusion图像生成(附完整代码+流程图)
数据仓库·深度学习·stable diffusion·aigc·流程图·cann
Niuguangshuo4 天前
DALL-E 3:如何通过重构“文本描述“革新图像生成
人工智能·深度学习·计算机视觉·stable diffusion·重构·transformer
Niuguangshuo4 天前
深入解析 Stable Diffusion XL(SDXL):改进潜在扩散模型,高分辨率合成突破
stable diffusion
Niuguangshuo4 天前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火4 天前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
迈火12 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路12 天前
Stable Diffusion 参数记录
stable diffusion
孤狼warrior15 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion