Cohere发布Command R+:支持中文,1040亿参数,性能媲美GPT-4,RAG和工具应用领先

前言

4月5日,知名AI公司Cohere正式发布了一款全新的大型语言模型(LLM)------Command R+。该模型拥有1040亿参数,在多种语言支持、检索增强生成(RAG)能力和工具应用方面均取得了突破性进展,其性能甚至可与OpenAI的GPT-4相媲美。

性能媲美 GPT-4

值得一提的是,Command R+在多项测评中的表现不但超越了业界主流开源模型,在某些指标上甚至可与GPT-4媲美。

在LMSys Chatbot Arena排行榜上,Command R+排名第6位,高于GPT-4-0314。这意味着该模型不仅在多语言处理、RAG应用等方面优于其他大模型,在对话系统性能上也能与业界顶尖产品抗衡。

1040亿参数,支持中文在内10种语言

从参数规模来看,Command R+无疑是当前最大型的开源LLM之一,总计拥有1040亿个参数。这使其在处理复杂任务时具备非凡的学习和推理能力。更值得一提的是,Command R+不仅支持英语,还覆盖了法语、德语、西班牙语、意大利语、葡萄牙语(巴西)、日语、韩语、阿拉伯语和简体中文等10种语言。这无疑大幅提升了该模型在全球范围内的适用性。

优化的检索增强生成(RAG)能力

作为Cohere旗下的旗舰模型,Command R+在检索增强生成(RAG)能力上进行了全面优化和升级。RAG是目前大型语言模型最重要的技术之一,它可以让模型根据给定的上下文信息,从外部知识源中检索相关内容,并将其融合到生成的响应中。这不仅大幅提升了回答的准确性,也能有效缓解模型的"幻觉"问题。

对于Command R+而言,其RAG模块的性能不仅接近GPT-4,在某些指标上还有所超越。例如,该模型能够更准确地预测哪些检索结果是最相关的,并将其以引用的形式嵌入到生成的回答中,进一步增强了回答的可信度。

此外,Command R+还支持多种RAG回答模式,用户可以根据具体需求选择"精确引用模式"或"快速引用模式"。前者会先预测相关文档,再生成回答并插入引用,而后者则会直接生成带引用的回答,以生成更少的tokens为目标。

多步骤工具使用能力

除了RAG,Command R+在工具使用方面也有了重大突破。该模型不仅可以调用各种外部工具,如搜索引擎、API、数据库等,还支持多步骤工具使用,能够在多个步骤中组合多种工具来完成复杂任务。这使Command R+不仅能够理解和生成文本,还能充当核心的推理引擎,做出决策并自动化需要智能才能解决的困难任务。Gomez表示,Command R+在使用工具时,即使遇到错误或故障,也能进行自我纠正,多次尝试直至完成任务,这在实际应用中极为重要。

此外,该模型还内置了一个高级分词器,在处理非英语文本时表现出色,在压缩成本方面比市面上其他模型优势明显,最高可达57%的降幅。

总结

总的来说,Cohere发布的Command R+无疑是目前开源LLM领域的一匹黑马。这款1040亿参数的超大模型,不仅在技术指标上遥遥领先,在满足企业级需求方面也做出了创新性尝试,值得业界关注。

模型下载

Huggingface模型下载

huggingface.co/CohereForAI...

AI快站模型免费加速下载

aifasthub.com/models/Cohe...

相关推荐
weixin_446260858 小时前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
jonyleek8 小时前
独立租户,统一底座:基于Vue3打造的JVS开源多租户框架设计与实现
低代码·前端框架·开源·vue·软件开发·轻应用
CAE3208 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎8 小时前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经8 小时前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
MarcoPage9 小时前
Python 字典推导式入门:一行构建键值对映射
java·linux·python
TG:@yunlaoda360 云老大11 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗11 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄14 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭14 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer