stable diffusion基本原理

diffusion model

  • latent diffusion :先对图片降维,然后在降维空间做diffusion;stable diffusion即基于此方法实现的,因此计算量很小;
  • 共用降噪网络U-Net:输入noisy image+step,告诉网络当前的噪声等级;预测出来噪声,noisy image-noise,得到降噪之后的图片;然后继续送进网络,再做一次这样的推理;

stable diffusion整体

stable diffusion拆解

  • stable diffusion的推理流程:CLIP模型对文本进行编码,得到文本-图片共享域的embedding;然后送给lattent diffusion,最后输出经过解码器重建为高清图片。

  • diffusion 正向流程是图片加白噪声,具体加的方法看schedule的设置,比如每次加一定量;或者先加的少,后加的多---图片特征损失的比较慢;高斯噪声可以累加,因此在设置step=100的时候,实际上每一步的结果都可以直接推出来了;



  • stable diffusion的输入【step, noisy image,文本特征】,为了加强文本对生成内容的控制,引入classifier free guidance进行控制;有文本控制和没有文本控制的情况下,生成两种噪声,互减之后的部分既是文本引导改变的噪声部分,乘一定的系数对文本引导改变的结果进行加强,再加上没有文本引导部分的噪声,合并成本轮预测的噪声。

  • 进阶玩法:webUI上有正向提示词,和负向提示词;可以通过classifier free guidance进行加强or减弱的控制;

  • VAE和CLIP模型都是预先训练好的;stable diffusion 2用的是LAION数据集训练的CLIP模型;官网有模型公开,但有的模型没有训练使用的数据集公开;

相关推荐
985小水博一枚呀7 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan8 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀11 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路21 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子27 分钟前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川5 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程