stable diffusion基本原理

diffusion model

  • latent diffusion :先对图片降维,然后在降维空间做diffusion;stable diffusion即基于此方法实现的,因此计算量很小;
  • 共用降噪网络U-Net:输入noisy image+step,告诉网络当前的噪声等级;预测出来噪声,noisy image-noise,得到降噪之后的图片;然后继续送进网络,再做一次这样的推理;

stable diffusion整体

stable diffusion拆解

  • stable diffusion的推理流程:CLIP模型对文本进行编码,得到文本-图片共享域的embedding;然后送给lattent diffusion,最后输出经过解码器重建为高清图片。

  • diffusion 正向流程是图片加白噪声,具体加的方法看schedule的设置,比如每次加一定量;或者先加的少,后加的多---图片特征损失的比较慢;高斯噪声可以累加,因此在设置step=100的时候,实际上每一步的结果都可以直接推出来了;



  • stable diffusion的输入【step, noisy image,文本特征】,为了加强文本对生成内容的控制,引入classifier free guidance进行控制;有文本控制和没有文本控制的情况下,生成两种噪声,互减之后的部分既是文本引导改变的噪声部分,乘一定的系数对文本引导改变的结果进行加强,再加上没有文本引导部分的噪声,合并成本轮预测的噪声。

  • 进阶玩法:webUI上有正向提示词,和负向提示词;可以通过classifier free guidance进行加强or减弱的控制;

  • VAE和CLIP模型都是预先训练好的;stable diffusion 2用的是LAION数据集训练的CLIP模型;官网有模型公开,但有的模型没有训练使用的数据集公开;

相关推荐
shadowcz00740 分钟前
关于GEO的研究总结#使用 Notebooklm 来研究论文和整理报告#PDF分享
人工智能·pdf
生成论实验室1 小时前
即事是道:一种基于生成论的分布式体验存在论
人工智能·分布式·科技·神经网络·信息与通信
锋行天下6 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮8 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水8 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊8 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘8 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15889 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14559 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI9 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment