使用GAN做图像超分——SRGAN,ESRGAN

在GAN出现之前,使用的更多是MSE,PSNR,SSIM来衡量图像相似度,同时也使用他们作为损失函数。

但是这些引以为傲的指标,有时候也不是那么靠谱:

MSE对于大的误差更敏感,所以结果就是会倾向于收敛到期望附近,表现为丢失高频信息。同时根据实验,MSE的收敛效果也差于L1:

但是只使用L1也有问题,现在通常的做法是多种损失混合使用,比如MS-SSIM+L1,还有基于DCT的loss。

在目前超分辨率的论文中不使用MSE,而使用L1或者Perceptual loss的原因是什么? - 知乎

SRGAN,ESRGAN,Real ESRGAN,一步步演化,对比着看才更容易理解。

SRGAN

SRGAN主要从损失函数的角度优化。因为发现一MSE为损失函数时,网络会倾向于平均的结果,表现在图像上就是过于平滑,丢失细节。https://arxiv.org/pdf/1609.04802.pdf

SRGAN使用了两个损失函数,一个是使用VGG的特征图,在特征图上计算欧式距离。第二个损失函数是使用对抗网络中的鉴别器,判断当前输出结果是否是真实的HR数据。

ESRGAN

ESRGAN在损失函数上继续优化。特征图损失部分,使用的是激活前的而不是激活后的,因为激活后的未免太抽象;

鉴别器损失部分,借鉴relativistic GAN,使用相对损失而不是绝对损失。

除了损失函数,网络结构方面也是把残差,dense net组合成更复杂的RRDB:

首先是构建Dense Block,卷积越往后,接受的通道数越多(因为是之前所有的输出和最开始的输入)。Dense Block把输出和输入线性组合,就是RDB。RRDB就是把三个RDB串起来,再把输出和输入做线性组合。组合的时候,输出只占0.2.

最终以PSNR和GAN为目标,作者训练了两套模型参数,对两套参数加权融合,可以互补二者的优缺点。

Real ESRGAN

Real ESRGAN主要的贡献是数据对的生成。通过模糊,下采样,加噪声,压缩,模拟振铃效应等得到了更接近真实退化的图像对:

SRGAN、ESRGAN与Real ESRGAN方法介绍 - 知乎

ESRGAN原理分析和代码解读 - 知乎

超分之ESRGAN官方代码解读_residual-in-residual dense block、-CSDN博客

相关推荐
Se7en25820 分钟前
Prefix Caching 详解:实现 KV Cache 的跨请求高效复用
人工智能
山顶听风25 分钟前
多层感知器MLP实现非线性分类(原理)
人工智能·分类·数据挖掘
佛喜酱的AI实践25 分钟前
5分钟入门Google ADK -- 从零构建你的第一个AI Agent
人工智能
用户387754343356327 分钟前
Midjourney Imagine API 申请及使用
人工智能·后端
山顶听风29 分钟前
MLP实战二:MLP 实现图像数字多分类
人工智能·机器学习·分类
mengyoufengyu35 分钟前
DeepSeek12-Open WebUI 知识库配置详细步骤
人工智能·大模型·deepseek
啥都会一点的研究生38 分钟前
仅需一行代码即可提升训练效果!
神经网络
carpell1 小时前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
智能汽车人1 小时前
自动驾驶---SD图导航的规划策略
人工智能·机器学习·自动驾驶
mengyoufengyu2 小时前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek