使用GAN做图像超分——SRGAN,ESRGAN

在GAN出现之前,使用的更多是MSE,PSNR,SSIM来衡量图像相似度,同时也使用他们作为损失函数。

但是这些引以为傲的指标,有时候也不是那么靠谱:

MSE对于大的误差更敏感,所以结果就是会倾向于收敛到期望附近,表现为丢失高频信息。同时根据实验,MSE的收敛效果也差于L1:

但是只使用L1也有问题,现在通常的做法是多种损失混合使用,比如MS-SSIM+L1,还有基于DCT的loss。

在目前超分辨率的论文中不使用MSE,而使用L1或者Perceptual loss的原因是什么? - 知乎

SRGAN,ESRGAN,Real ESRGAN,一步步演化,对比着看才更容易理解。

SRGAN

SRGAN主要从损失函数的角度优化。因为发现一MSE为损失函数时,网络会倾向于平均的结果,表现在图像上就是过于平滑,丢失细节。https://arxiv.org/pdf/1609.04802.pdf

SRGAN使用了两个损失函数,一个是使用VGG的特征图,在特征图上计算欧式距离。第二个损失函数是使用对抗网络中的鉴别器,判断当前输出结果是否是真实的HR数据。

ESRGAN

ESRGAN在损失函数上继续优化。特征图损失部分,使用的是激活前的而不是激活后的,因为激活后的未免太抽象;

鉴别器损失部分,借鉴relativistic GAN,使用相对损失而不是绝对损失。

除了损失函数,网络结构方面也是把残差,dense net组合成更复杂的RRDB:

首先是构建Dense Block,卷积越往后,接受的通道数越多(因为是之前所有的输出和最开始的输入)。Dense Block把输出和输入线性组合,就是RDB。RRDB就是把三个RDB串起来,再把输出和输入做线性组合。组合的时候,输出只占0.2.

最终以PSNR和GAN为目标,作者训练了两套模型参数,对两套参数加权融合,可以互补二者的优缺点。

Real ESRGAN

Real ESRGAN主要的贡献是数据对的生成。通过模糊,下采样,加噪声,压缩,模拟振铃效应等得到了更接近真实退化的图像对:

SRGAN、ESRGAN与Real ESRGAN方法介绍 - 知乎

ESRGAN原理分析和代码解读 - 知乎

超分之ESRGAN官方代码解读_residual-in-residual dense block、-CSDN博客

相关推荐
俊哥V5 分钟前
[本周看点]AI算力扩张的“隐形瓶颈”——电网接入为何成为最大制约?
人工智能·ai
X54先生(人文科技)14 分钟前
碳硅协同对位法:从对抗博弈到共生协奏的元协议
人工智能·架构·零知识证明
阿里云大数据AI技术30 分钟前
寻找 AI 全能王——阿里云 Data+AI 工程师全球大奖赛正式开启
人工智能·阿里云·云计算·天池大赛
Oflycomm1 小时前
CES 2026:高通扩展 IE-IoT 产品组合,边缘 AI 进入“平台化竞争”阶段
人工智能·物联网·高通·wifi7·ces2026·qogrisys
jay神1 小时前
指纹识别考勤打卡系统 - 完整源码项目
人工智能·深度学习·机器学习·计算机视觉·毕业设计
智慧医院运行管理解决方案专家1 小时前
当医院安全进入“自动驾驶”时代:AI机器人医院安全值守日记
人工智能·安全·自动驾驶
码农三叔1 小时前
(2-3)人形机器人的总体架构与系统工程:人形机器人的关键性能指标
人工智能·机器人·人形机器人
2501_941507941 小时前
【目标检测】YOLO13-C3k2-PFDConv实现长颈鹿与斑马精准检测,完整教程与代码解析_1
人工智能·目标检测·目标跟踪
机器学习之心1 小时前
MATLAB基于多指标定量测定联合PCA、OPLS-DA、FA及熵权TOPSIS模型的等级预测
人工智能·算法·matlab·opls-da
AI殉道师1 小时前
AI Agent 架构深度解析:从零打造你的智能助手
人工智能·架构