使用策略模式实现 Spring 分布式和单机限流

我们可以使用策略模式来统一单机限流和分布式限流的实现,提高代码的可扩展性和可维护性。

思路是定义一个 RateLimitStrategy 接口,并分别实现单机限流策略 LocalRateLimitStrategy 和分布式限流策略 DistributedRateLimitStrategy。在 AOP 切面中,根据配置决定使用哪种限流策略。

定义策略接口

java 复制代码
public interface RateLimitStrategy {
    boolean tryAcquire(String key, double qps, long timeout, TimeUnit timeUnit);
}

实现单机限流策略

java 复制代码
import com.google.common.util.concurrent.RateLimiter;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;

public class LocalRateLimitStrategy implements RateLimitStrategy {

    private final Map<String, RateLimiter> rateLimiters = new ConcurrentHashMap<>();

    @Override
    public boolean tryAcquire(String key, double qps, long timeout, TimeUnit timeUnit) {
        RateLimiter limiter = rateLimiters.computeIfAbsent(key, k -> RateLimiter.create(qps));
        if (timeout > 0) {
            return limiter.tryAcquire(timeout, timeUnit);
        } else {
            return limiter.tryAcquire();
        }
    }
}

实现分布式限流策略

java 复制代码
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;

import java.util.Collections;
import java.util.List;
import java.util.concurrent.TimeUnit;

public class DistributedRateLimitStrategy implements RateLimitStrategy {

    private final RedisTemplate<String, Object> redisTemplate;

    public DistributedRateLimitStrategy(RedisTemplate<String, Object> redisTemplate) {
        this.redisTemplate = redisTemplate;
    }

    @Override
    public boolean tryAcquire(String key, double qps, long timeout, TimeUnit timeUnit) {
        long window = timeUnit.toSeconds(timeout);
        List<String> keys = Collections.singletonList(key);

        String luaScript = buildLuaScript();
        RedisScript<Long> redisScript = new DefaultRedisScript<>(luaScript, Long.class);
        Long currentCount = redisTemplate.execute(redisScript, keys, Collections.singletonList(window), Collections.singletonList(qps));

        return currentCount <= qps;
    }

    private String buildLuaScript() {
       return "local key = KEYS[1]\n" +
                "local window = tonumber(ARGV[1])\n" +
                "local qps = tonumber(ARGV[2])\n" +
                "local current = redis.call('incrBy', key, 1)\n" +
                "if current == 1 then\n" +
                "    redis.call('expire', key, window)\n" +
                "end\n" +
                "if current > qps then\n" +
                "    return redis.call('decrBy', key, 1)\n" +
                "else\n" +
                "    return current\n" +
                "end";
    }
}

修改切面逻辑

java 复制代码
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

import java.util.concurrent.TimeUnit;

@Aspect
@Component
public class RateLimitAspect {

    @Autowired
    private RateLimitStrategy rateLimitStrategy;

    @Around("@annotation(rateLimitAnnotation)")
    public Object around(ProceedingJoinPoint joinPoint, RateLimit rateLimitAnnotation) throws Throwable {
        String key = joinPoint.getSignature().toLongString();
        double qps = rateLimitAnnotation.qps();
        long timeout = rateLimitAnnotation.timeout();
        TimeUnit timeUnit = rateLimitAnnotation.timeUnit();

        boolean acquired = rateLimitStrategy.tryAcquire(key, qps, timeout, timeUnit);
        if (!acquired) {
            throw new RuntimeException("Rate limit exceeded");
        }

        return joinPoint.proceed();
    }
}

在切面逻辑中,我们注入了 RateLimitStrategy 的实现类。根据配置决定使用单机限流还是分布式限流策略。

使用示例

java 复制代码
@RestController
public class DemoController {

    @Autowired
    private RateLimitStrategy rateLimitStrategy;

    @GetMapping("/test")
    @ApiRateLimit(qps = 10, timeout = 60, timeUnit = TimeUnit.SECONDS)
    public String test() {
        return "hello world";
    }
}

在使用时,我们只需要在方法上标注 @RateLimit 注解即可,而不需要关心底层使用的是单机限流还是分布式限流。

配置限流策略

在 Spring 配置中,我们可以根据需求注入不同的 RateLimitStrategy 实现类:

java 复制代码
// 单机限流配置
@Bean
public RateLimitStrategy localRateLimitStrategy() {
    return new LocalRateLimitStrategy();
}

// 分布式限流配置
@Bean
public RateLimitStrategy distributedRateLimitStrategy(RedisTemplate<String, Object> redisTemplate) {
    return new DistributedRateLimitStrategy(redisTemplate);
}

通过使用策略模式,我们将限流算法与具体的限流策略解耦,提高了代码的可扩展性和可维护性。未来如果需要新的限流策略,只需要实现 RateLimitStrategy 接口并配置即可,无需修改核心的限流逻辑。

相关推荐
算法与双吉汉堡1 天前
【短链接项目笔记】Day2 用户注册
java·redis·笔记·后端·spring
佛祖让我来巡山1 天前
接着唠:三级缓存为啥是“刚需”?没有它Spring工厂得“停工”!
spring·三级缓存·spring三级缓存
北漂IT民工_程序员_ZG1 天前
SpringBean生命周期,动态代理
java·spring boot·spring
老华带你飞1 天前
建筑材料管理|基于springboot 建筑材料管理系统(源码+数据库+文档)
java·数据库·vue.js·spring boot·后端·学习·spring
zhangyifang_0091 天前
Spring中的BeanFactory类
java·后端·spring
ChaITSimpleLove1 天前
基于 .NET Garnet 1.0.91 实现高性能分布式锁(使用 Lua 脚本)
分布式·.net·lua
R.lin1 天前
Spring AI Alibaba 1.1 正式发布!
java·后端·spring
程序员阿明1 天前
spring security 6的知识点总结
java·后端·spring
running up1 天前
Spring Bean生命周期- BeanDefinition 加载与 BeanFactoryPostProcessor BeanPostProcessor
java·后端·spring
Java水解1 天前
Spring AOP原理深度解析:代理模式、JDK动态代理与CGLIB
后端·spring