Semantic Kernel开发实践:使用Embedding和语义内存利用企业知识库,检索增强生成

前言

最近在捣鼓研究Semantic Kernel,对如何在AI对话中引用私有的知识库比较感兴趣。目前比较常见的做法是fine-tuning或embedding。这篇文章就来看看我是如何使用semantic kernel搭配embeddings模型的。

示例采用控制台应用,编程语言是C#,使用的是.net 8.0。

GPT模型使用的是Azure OpenAI GPT-3.5-turbo。
embeddings简单来说,是将非结构化的文本通过embedding转换为数值向量的方法。这些向量反映了文本的语义和关系。

操作演示

下面开始演示操作步骤:

1、首先确认已经在Azure OpenAI服务中部署了两个模型,分别是GPT-3.5-turbo和text-embedding-3-small。

2、创建控制台应用kmdemo01

3、引入包

semantic kernel相关的包

csharp 复制代码
dotnet add package Microsoft.KernelMemory.Core
dotnet add package Microsoft.SemanticKernel

读取环境配置的包

csharp 复制代码
dotnet add package dotenv.net

4、修改program.cs文件,这里我使用的是无服务模式

ini 复制代码
using Microsoft.KernelMemory;
using Microsoft.SemanticKernel;
​
DotEnv.Load();
​
var env = DotEnv.Read();
var embeddingConfig = new AzureOpenAIConfig()
{
    APIKey = env["API_KEY"],
    Deployment = env["EMBEDDING_NAME"],
    Endpoint = env["ENDPOINT"],
    APIType = AzureOpenAIConfig.APITypes.EmbeddingGeneration,
    Auth = AzureOpenAIConfig.AuthTypes.APIKey
};
var textConfig = new AzureOpenAIConfig()
{
    APIKey = env["API_KEY"],
    Deployment = env["TEXT_NAME"],
    Endpoint = env["ENDPOINT"],
    APIType = AzureOpenAIConfig.APITypes.ChatCompletion,
    Auth = AzureOpenAIConfig.AuthTypes.APIKey
};
var kernel = Kernel.CreateBuilder()
    .AddAzureOpenAIChatCompletion(env["TEXT_NAME"], env["ENDPOINT"], env["API_KEY"])
    .Build();
​
var memory = new KernelMemoryBuilder()
    .WithAzureOpenAITextEmbeddingGeneration(embeddingConfig)
    .WithAzureOpenAITextGeneration(textConfig)
    .WithSimpleVectorDb()
    .Build<MemoryServerless>();
​
await memory.ImportWebPageAsync("https://raw.githubusercontent.com/microsoft/kernel-memory/main/README.md");
await memory.ImportWebPageAsync("https://juejin.cn/post/7323408577709080610");
Console.WriteLine("文档已经准备好,开始提问吧!");
while (true)
{
    var userInput = Console.ReadLine();
    var answer = await memory.AskAsync(userInput);
    Console.WriteLine(answer.Result);
    Console.WriteLine("参考:");
    foreach (var source in answer.RelevantSources)
    {
        Console.WriteLine($" - {source.SourceName}, {source.Link}[{source.Partitions.First()}{source.Partitions.First().LastUpdate:D}]");
    }
}

运行程序,在控制台可以看到如下面截图所示的内容,这里就是导入文本到语义内存里的过程。

下面是我根据代码中导入的文档进行问答的截图

结语

这篇文章展示了通过kernel memory导入私有知识库来检索增强生成。embeddings保证了知识库的隐私,又利用了大模型的能力,相比fine-turning来说,则它是成本更低并且效果很好的一种方式。通过semantic kernel来开发,操作起来也是非常的简单。

相关推荐
牛奔1 小时前
Go 如何避免频繁抢占?
开发语言·后端·golang
想用offer打牌6 小时前
MCP (Model Context Protocol) 技术理解 - 第二篇
后端·aigc·mcp
KYGALYX7 小时前
服务异步通信
开发语言·后端·微服务·ruby
掘了8 小时前
「2025 年终总结」在所有失去的人中,我最怀念我自己
前端·后端·年终总结
在校大学生0078 小时前
AI教我赚100万用1年的时间–4(水文)
aigc
爬山算法8 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
Moment8 小时前
富文本编辑器在 AI 时代为什么这么受欢迎
前端·javascript·后端
心疼你的一切9 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
Cobyte9 小时前
AI全栈实战:使用 Python+LangChain+Vue3 构建一个 LLM 聊天应用
前端·后端·aigc