【域适应】基于域分离网络的MNIST数据10分类典型方法实现

关于

大规模数据收集和注释的成本通常使得将机器学习算法应用于新任务或数据集变得异常昂贵。规避这一成本的一种方法是在合成数据上训练模型,其中自动提供注释。尽管它们很有吸引力,但此类模型通常无法从合成图像推广到真实图像,因此需要域适应算法来操纵这些模型,然后才能成功应用。现有的方法要么侧重于将表示从一个域映射到另一个域,要么侧重于学习提取对于提取它们的域而言不变的特征。然而,通过只关注在两个域之间创建映射或共享表示,他们忽略了每个域的单独特征。域分离网络可以实现对每个域的独特之处进行特征建模,,同时进行模型域不变特征的提取

参考文章: https://arxiv.org/abs/1608.06019

工具

方法实现

数据集定义
python 复制代码
import torch.utils.data as data
from PIL import Image
import os


class GetLoader(data.Dataset):
    def __init__(self, data_root, data_list, transform=None):
        self.root = data_root
        self.transform = transform

        f = open(data_list, 'r')
        data_list = f.readlines()
        f.close()

        self.n_data = len(data_list)

        self.img_paths = []
        self.img_labels = []

        for data in data_list:
            self.img_paths.append(data[:-3])
            self.img_labels.append(data[-2])

    def __getitem__(self, item):
        img_paths, labels = self.img_paths[item], self.img_labels[item]
        imgs = Image.open(os.path.join(self.root, img_paths)).convert('RGB')

        if self.transform is not None:
            imgs = self.transform(imgs)
            labels = int(labels)

        return imgs, labels

    def __len__(self):
        return self.n_data
模型搭建
python 复制代码
import torch.nn as nn
from functions import ReverseLayerF


class DSN(nn.Module):
    def __init__(self, code_size=100, n_class=10):
        super(DSN, self).__init__()
        self.code_size = code_size

        ##########################################
        # private source encoder
        ##########################################

        self.source_encoder_conv = nn.Sequential()
        self.source_encoder_conv.add_module('conv_pse1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5,
                                                                padding=2))
        self.source_encoder_conv.add_module('ac_pse1', nn.ReLU(True))
        self.source_encoder_conv.add_module('pool_pse1', nn.MaxPool2d(kernel_size=2, stride=2))

        self.source_encoder_conv.add_module('conv_pse2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5,
                                                                padding=2))
        self.source_encoder_conv.add_module('ac_pse2', nn.ReLU(True))
        self.source_encoder_conv.add_module('pool_pse2', nn.MaxPool2d(kernel_size=2, stride=2))

        self.source_encoder_fc = nn.Sequential()
        self.source_encoder_fc.add_module('fc_pse3', nn.Linear(in_features=7 * 7 * 64, out_features=code_size))
        self.source_encoder_fc.add_module('ac_pse3', nn.ReLU(True))

        #########################################
        # private target encoder
        #########################################

        self.target_encoder_conv = nn.Sequential()
        self.target_encoder_conv.add_module('conv_pte1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5,
                                                                padding=2))
        self.target_encoder_conv.add_module('ac_pte1', nn.ReLU(True))
        self.target_encoder_conv.add_module('pool_pte1', nn.MaxPool2d(kernel_size=2, stride=2))

        self.target_encoder_conv.add_module('conv_pte2', nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5,
                                                                padding=2))
        self.target_encoder_conv.add_module('ac_pte2', nn.ReLU(True))
        self.target_encoder_conv.add_module('pool_pte2', nn.MaxPool2d(kernel_size=2, stride=2))

        self.target_encoder_fc = nn.Sequential()
        self.target_encoder_fc.add_module('fc_pte3', nn.Linear(in_features=7 * 7 * 64, out_features=code_size))
        self.target_encoder_fc.add_module('ac_pte3', nn.ReLU(True))

        ################################
        # shared encoder (dann_mnist)
        ################################

        self.shared_encoder_conv = nn.Sequential()
        self.shared_encoder_conv.add_module('conv_se1', nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5,
                                                                  padding=2))
        self.shared_encoder_conv.add_module('ac_se1', nn.ReLU(True))
        self.shared_encoder_conv.add_module('pool_se1', nn.MaxPool2d(kernel_size=2, stride=2))

        self.shared_encoder_conv.add_module('conv_se2', nn.Conv2d(in_channels=32, out_channels=48, kernel_size=5,
                                                                  padding=2))
        self.shared_encoder_conv.add_module('ac_se2', nn.ReLU(True))
        self.shared_encoder_conv.add_module('pool_se2', nn.MaxPool2d(kernel_size=2, stride=2))

        self.shared_encoder_fc = nn.Sequential()
        self.shared_encoder_fc.add_module('fc_se3', nn.Linear(in_features=7 * 7 * 48, out_features=code_size))
        self.shared_encoder_fc.add_module('ac_se3', nn.ReLU(True))

        # classify 10 numbers
        self.shared_encoder_pred_class = nn.Sequential()
        self.shared_encoder_pred_class.add_module('fc_se4', nn.Linear(in_features=code_size, out_features=100))
        self.shared_encoder_pred_class.add_module('relu_se4', nn.ReLU(True))
        self.shared_encoder_pred_class.add_module('fc_se5', nn.Linear(in_features=100, out_features=n_class))

        self.shared_encoder_pred_domain = nn.Sequential()
        self.shared_encoder_pred_domain.add_module('fc_se6', nn.Linear(in_features=100, out_features=100))
        self.shared_encoder_pred_domain.add_module('relu_se6', nn.ReLU(True))

        # classify two domain
        self.shared_encoder_pred_domain.add_module('fc_se7', nn.Linear(in_features=100, out_features=2))

        ######################################
        # shared decoder (small decoder)
        ######################################

        self.shared_decoder_fc = nn.Sequential()
        self.shared_decoder_fc.add_module('fc_sd1', nn.Linear(in_features=code_size, out_features=588))
        self.shared_decoder_fc.add_module('relu_sd1', nn.ReLU(True))

        self.shared_decoder_conv = nn.Sequential()
        self.shared_decoder_conv.add_module('conv_sd2', nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5,
                                                                  padding=2))
        self.shared_decoder_conv.add_module('relu_sd2', nn.ReLU())

        self.shared_decoder_conv.add_module('conv_sd3', nn.Conv2d(in_channels=16, out_channels=16, kernel_size=5,
                                                                  padding=2))
        self.shared_decoder_conv.add_module('relu_sd3', nn.ReLU())

        self.shared_decoder_conv.add_module('us_sd4', nn.Upsample(scale_factor=2))

        self.shared_decoder_conv.add_module('conv_sd5', nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3,
                                                                  padding=1))
        self.shared_decoder_conv.add_module('relu_sd5', nn.ReLU(True))

        self.shared_decoder_conv.add_module('conv_sd6', nn.Conv2d(in_channels=16, out_channels=3, kernel_size=3,
                                                                  padding=1))

    def forward(self, input_data, mode, rec_scheme, p=0.0):

        result = []

        if mode == 'source':

            # source private encoder
            private_feat = self.source_encoder_conv(input_data)
            private_feat = private_feat.view(-1, 64 * 7 * 7)
            private_code = self.source_encoder_fc(private_feat)

        elif mode == 'target':

            # target private encoder
            private_feat = self.target_encoder_conv(input_data)
            private_feat = private_feat.view(-1, 64 * 7 * 7)
            private_code = self.target_encoder_fc(private_feat)

        result.append(private_code)

        # shared encoder
        shared_feat = self.shared_encoder_conv(input_data)
        shared_feat = shared_feat.view(-1, 48 * 7 * 7)
        shared_code = self.shared_encoder_fc(shared_feat)
        result.append(shared_code)

        reversed_shared_code = ReverseLayerF.apply(shared_code, p)
        domain_label = self.shared_encoder_pred_domain(reversed_shared_code)
        result.append(domain_label)

        if mode == 'source':
            class_label = self.shared_encoder_pred_class(shared_code)
            result.append(class_label)

        # shared decoder

        if rec_scheme == 'share':
            union_code = shared_code
        elif rec_scheme == 'all':
            union_code = private_code + shared_code
        elif rec_scheme == 'private':
            union_code = private_code

        rec_vec = self.shared_decoder_fc(union_code)
        rec_vec = rec_vec.view(-1, 3, 14, 14)

        rec_code = self.shared_decoder_conv(rec_vec)
        result.append(rec_code)

        return result
模型训练
python 复制代码
import random
import os
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import numpy as np
from torch.autograd import Variable
from torchvision import datasets
from torchvision import transforms
from model_compat import DSN
from data_loader import GetLoader
from functions import SIMSE, DiffLoss, MSE
from test import test

######################
# params             #
######################

source_image_root = os.path.join('.', 'dataset', 'mnist')
target_image_root = os.path.join('.', 'dataset', 'mnist_m')
model_root = 'model'
cuda = True
cudnn.benchmark = True
lr = 1e-2
batch_size = 32
image_size = 28
n_epoch = 100
step_decay_weight = 0.95
lr_decay_step = 20000
active_domain_loss_step = 10000
weight_decay = 1e-6
alpha_weight = 0.01
beta_weight = 0.075
gamma_weight = 0.25
momentum = 0.9

manual_seed = random.randint(1, 10000)
random.seed(manual_seed)
torch.manual_seed(manual_seed)

#######################
# load data           #
#######################

img_transform = transforms.Compose([
    transforms.Resize(image_size),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])

dataset_source = datasets.MNIST(
    root=source_image_root,
    train=True,
    transform=img_transform
)

dataloader_source = torch.utils.data.DataLoader(
    dataset=dataset_source,
    batch_size=batch_size,
    shuffle=True,
    num_workers=8
)

train_list = os.path.join(target_image_root, 'mnist_m_train_labels.txt')

dataset_target = GetLoader(
    data_root=os.path.join(target_image_root, 'mnist_m_train'),
    data_list=train_list,
    transform=img_transform
)

dataloader_target = torch.utils.data.DataLoader(
    dataset=dataset_target,
    batch_size=batch_size,
    shuffle=True,
    num_workers=8
)

#####################
#  load model       #
#####################

my_net = DSN()

#####################
# setup optimizer   #
#####################


def exp_lr_scheduler(optimizer, step, init_lr=lr, lr_decay_step=lr_decay_step, step_decay_weight=step_decay_weight):

    # Decay learning rate by a factor of step_decay_weight every lr_decay_step
    current_lr = init_lr * (step_decay_weight ** (step / lr_decay_step))

    if step % lr_decay_step == 0:
        print 'learning rate is set to %f' % current_lr

    for param_group in optimizer.param_groups:
        param_group['lr'] = current_lr

    return optimizer


optimizer = optim.SGD(my_net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)

loss_classification = torch.nn.CrossEntropyLoss()
loss_recon1 = MSE()
loss_recon2 = SIMSE()
loss_diff = DiffLoss()
loss_similarity = torch.nn.CrossEntropyLoss()

if cuda:
    my_net = my_net.cuda()
    loss_classification = loss_classification.cuda()
    loss_recon1 = loss_recon1.cuda()
    loss_recon2 = loss_recon2.cuda()
    loss_diff = loss_diff.cuda()
    loss_similarity = loss_similarity.cuda()

for p in my_net.parameters():
    p.requires_grad = True

#############################
# training network          #
#############################
MNIST数据重建/共有部分特征/私有数据特征可视化
MNIST_m数据重建/共有部分特征/私有数据特征可视化

代码获取

相关问题和项目开发,欢迎私信交流和沟通。

相关推荐
隐语SecretFlow11 小时前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo12 小时前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈12 小时前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy12 小时前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu19 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡1 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有1 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社1 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
七元权1 天前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计
ViperL11 天前
[智能算法]可微的神经网络搜索算法-FBNet
人工智能·深度学习·神经网络