神经网络模型底层原理与实现10-softmax的实现

import torch

from IPython import display

from d2l import torch as d2l

batch_size=256

#定义训练和验证数据集

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

#参数初始化,把输入图片看成长度784的向量,这个数据集有十个类别,输出为10

num_inputs=784

num_outputs=10

w=torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=True)

b=torch.zeros(num_outputs,requires_grad=True)

#实现softmax函数

def softmax(X):

X_exp=torch.exp(X)

partition=X_exp.sum(1,keepdim=True)#保持输出维度,使它还是一个矩阵,0是按列求和,1是按行求和

#实现softmax回归模型

def net(X):

return softmax(torch.matmul(X.reshape(-1,w.shape[0]),w)+b)#matmul是矩阵乘法

#实现交叉熵损失函数

def cross_entropy(y_hat,y):#公式是-y*log(y_hat)

return -torch.log(y_hat[range(len(y_hat)),y])#log是以e为底的对数,根据前面推的公式,【】内是取出对应元素值

#将预测类别与真实类别比较,这里开始进入测试部分

def accuracy(y_hat,y):

if len(y_hat.shape)>1 and y_hat.shape[1]>1:

y_hat=y_hat.argmax(axis=1)#选出每行中最大的,也就是分类的类别

cmp=y_hat.type(y.dtype)==y

return float(cmp.type(y.dtype).sum())

#按照accuracy的思路,可以写出模型结果准确率计算函数,分子分母不断累加正确的个数和总的个数

def evaluate_accuracy(data_iter, net):

acc_sum, n = 0.0, 0

for X, y in data_iter:

acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()#item将tensor类型转为数据类型

n += y.shape[0]

return acc_sum / n

#softmax训练过程

def train_ch3(net, train_iter, test_iter, loss, num_epochs,batch_size,params=None, lr=None, optimizer=None):#num_epochs训练次数,lr学习率

for epoch in range(num_epochs):

train_l_sum, train_acc_sum, n = 0.0, 0.0, 0

for X, y in train_iter:

y_hat = net(X)#进入网络

l = loss(y_hat, y).sum()#求损失

梯度清零

if optimizer is not None:

optimizer.zero_grad()

elif params is not None and params[0].grad is not None:

for param in params:

param.grad.data.zero_()

l.backward()#反向传播

if optimizer is None:

d2l.sgd(params, lr, batch_size)

else:

optimizer.step()

train_l_sum += l.item()

train_acc_sum += (y_hat.argmax(dim=1) ==y).sum().item()

n += y.shape[0]

test_acc = evaluate_accuracy(test_iter, net)

print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n,test_acc))

总结一下:写一个深度学习算法的底层就是写它的模型、损失函数和评价函数

最终输出的结果:
epoch 1, loss 0.7878, train acc 0.749, test acc 0.794
epoch 2, loss 0.5702, train acc 0.814, test acc 0.813
epoch 3, loss 0.5252, train acc 0.827, test acc 0.819
epoch 4, loss 0.5010, train acc 0.833, test acc 0.824
epoch 5, loss 0.4858, train acc 0.836, test acc 0.815

相关推荐
意疏38 分钟前
节点小宝4.0 正式发布:一键直达,重新定义远程控制!
人工智能
一个无名的炼丹师1 小时前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
Yan-英杰1 小时前
BoostKit OmniAdaptor 源码深度解析
网络·人工智能·网络协议·tcp/ip·http
AI街潜水的八角1 小时前
基于Pytorch深度学习神经网络MNIST手写数字识别系统源码(带界面和手写画板)
pytorch·深度学习·神经网络
用泥种荷花1 小时前
【LangChain学习笔记】Message
人工智能
阿里云大数据AI技术1 小时前
一套底座支撑多场景:高德地图基于 Paimon + StarRocks 轨迹服务实践
人工智能
云擎算力平台omniyq.com1 小时前
CES 2026观察:从“物理AI”愿景看行业算力基础设施演进
人工智能
想用offer打牌2 小时前
一站式了解Spring AI Alibaba的流式输出
java·人工智能·后端
黑符石2 小时前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波
JQLvopkk2 小时前
智能AI“学习功能”在程序开发部分的逻辑
人工智能·机器学习·计算机视觉