神经网络模型底层原理与实现10-softmax的实现

import torch

from IPython import display

from d2l import torch as d2l

batch_size=256

#定义训练和验证数据集

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

#参数初始化,把输入图片看成长度784的向量,这个数据集有十个类别,输出为10

num_inputs=784

num_outputs=10

w=torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=True)

b=torch.zeros(num_outputs,requires_grad=True)

#实现softmax函数

def softmax(X):

X_exp=torch.exp(X)

partition=X_exp.sum(1,keepdim=True)#保持输出维度,使它还是一个矩阵,0是按列求和,1是按行求和

#实现softmax回归模型

def net(X):

return softmax(torch.matmul(X.reshape(-1,w.shape[0]),w)+b)#matmul是矩阵乘法

#实现交叉熵损失函数

def cross_entropy(y_hat,y):#公式是-y*log(y_hat)

return -torch.log(y_hat[range(len(y_hat)),y])#log是以e为底的对数,根据前面推的公式,【】内是取出对应元素值

#将预测类别与真实类别比较,这里开始进入测试部分

def accuracy(y_hat,y):

if len(y_hat.shape)>1 and y_hat.shape[1]>1:

y_hat=y_hat.argmax(axis=1)#选出每行中最大的,也就是分类的类别

cmp=y_hat.type(y.dtype)==y

return float(cmp.type(y.dtype).sum())

#按照accuracy的思路,可以写出模型结果准确率计算函数,分子分母不断累加正确的个数和总的个数

def evaluate_accuracy(data_iter, net):

acc_sum, n = 0.0, 0

for X, y in data_iter:

acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()#item将tensor类型转为数据类型

n += y.shape[0]

return acc_sum / n

#softmax训练过程

def train_ch3(net, train_iter, test_iter, loss, num_epochs,batch_size,params=None, lr=None, optimizer=None):#num_epochs训练次数,lr学习率

for epoch in range(num_epochs):

train_l_sum, train_acc_sum, n = 0.0, 0.0, 0

for X, y in train_iter:

y_hat = net(X)#进入网络

l = loss(y_hat, y).sum()#求损失

梯度清零

if optimizer is not None:

optimizer.zero_grad()

elif params is not None and params[0].grad is not None:

for param in params:

param.grad.data.zero_()

l.backward()#反向传播

if optimizer is None:

d2l.sgd(params, lr, batch_size)

else:

optimizer.step()

train_l_sum += l.item()

train_acc_sum += (y_hat.argmax(dim=1) ==y).sum().item()

n += y.shape[0]

test_acc = evaluate_accuracy(test_iter, net)

print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n,test_acc))

总结一下:写一个深度学习算法的底层就是写它的模型、损失函数和评价函数

最终输出的结果:
epoch 1, loss 0.7878, train acc 0.749, test acc 0.794
epoch 2, loss 0.5702, train acc 0.814, test acc 0.813
epoch 3, loss 0.5252, train acc 0.827, test acc 0.819
epoch 4, loss 0.5010, train acc 0.833, test acc 0.824
epoch 5, loss 0.4858, train acc 0.836, test acc 0.815

相关推荐
Moutai码农3 分钟前
大模型-提示词(Prompt)最佳实践
人工智能·语言模型·prompt
阿巴阿巴拉4 分钟前
Scala简介与基础语法学习总结
人工智能
zxsz_com_cn23 分钟前
风电行业预测性维护解决方案:AIoT驱动下的风机健康管理革命
大数据·运维·人工智能
Y1nhl2 小时前
搜广推校招面经六十四
人工智能·深度学习·leetcode·广告算法·推荐算法·搜索算法
禁默2 小时前
智能体开发基础:从概念到实现
人工智能·大模型·智能体
Y1nhl3 小时前
Pyspark学习一:概述
数据库·人工智能·深度学习·学习·spark·pyspark·大数据技术
简简单单做算法5 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
就决定是你啦!6 小时前
机器学习 第一章 绪论
人工智能·深度学习·机器学习
有个人神神叨叨8 小时前
OpenAI发布的《Addendum to GPT-4o System Card: Native image generation》文件的详尽笔记
人工智能·笔记