神经网络模型底层原理与实现10-softmax的实现

import torch

from IPython import display

from d2l import torch as d2l

batch_size=256

#定义训练和验证数据集

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

#参数初始化,把输入图片看成长度784的向量,这个数据集有十个类别,输出为10

num_inputs=784

num_outputs=10

w=torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=True)

b=torch.zeros(num_outputs,requires_grad=True)

#实现softmax函数

def softmax(X):

X_exp=torch.exp(X)

partition=X_exp.sum(1,keepdim=True)#保持输出维度,使它还是一个矩阵,0是按列求和,1是按行求和

#实现softmax回归模型

def net(X):

return softmax(torch.matmul(X.reshape(-1,w.shape[0]),w)+b)#matmul是矩阵乘法

#实现交叉熵损失函数

def cross_entropy(y_hat,y):#公式是-y*log(y_hat)

return -torch.log(y_hat[range(len(y_hat)),y])#log是以e为底的对数,根据前面推的公式,【】内是取出对应元素值

#将预测类别与真实类别比较,这里开始进入测试部分

def accuracy(y_hat,y):

if len(y_hat.shape)>1 and y_hat.shape[1]>1:

y_hat=y_hat.argmax(axis=1)#选出每行中最大的,也就是分类的类别

cmp=y_hat.type(y.dtype)==y

return float(cmp.type(y.dtype).sum())

#按照accuracy的思路,可以写出模型结果准确率计算函数,分子分母不断累加正确的个数和总的个数

def evaluate_accuracy(data_iter, net):

acc_sum, n = 0.0, 0

for X, y in data_iter:

acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()#item将tensor类型转为数据类型

n += y.shape[0]

return acc_sum / n

#softmax训练过程

def train_ch3(net, train_iter, test_iter, loss, num_epochs,batch_size,params=None, lr=None, optimizer=None):#num_epochs训练次数,lr学习率

for epoch in range(num_epochs):

train_l_sum, train_acc_sum, n = 0.0, 0.0, 0

for X, y in train_iter:

y_hat = net(X)#进入网络

l = loss(y_hat, y).sum()#求损失

梯度清零

if optimizer is not None:

optimizer.zero_grad()

elif params is not None and params[0].grad is not None:

for param in params:

param.grad.data.zero_()

l.backward()#反向传播

if optimizer is None:

d2l.sgd(params, lr, batch_size)

else:

optimizer.step()

train_l_sum += l.item()

train_acc_sum += (y_hat.argmax(dim=1) ==y).sum().item()

n += y.shape[0]

test_acc = evaluate_accuracy(test_iter, net)

print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n,test_acc))

总结一下:写一个深度学习算法的底层就是写它的模型、损失函数和评价函数

最终输出的结果:
epoch 1, loss 0.7878, train acc 0.749, test acc 0.794
epoch 2, loss 0.5702, train acc 0.814, test acc 0.813
epoch 3, loss 0.5252, train acc 0.827, test acc 0.819
epoch 4, loss 0.5010, train acc 0.833, test acc 0.824
epoch 5, loss 0.4858, train acc 0.836, test acc 0.815

相关推荐
Niuguangshuo43 分钟前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火1 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887821 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a1 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily1 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15881 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01172 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I2 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白2 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷2 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能