PromptRPA-手机上的智能代理框架

PromptRPA的设计基于一个智能代理的多代理框架,这些代理模拟人类的认知功能,专门用于解释用户意图、管理RPA生成的外部信息以及在智能手机上执行操作。传统的RPA技术能有效地自动化图形用户界面(GUI)上的任务,通过模仿人类交互而不修改现有代码,然而,其广泛采用受到了编写脚本语言和工作流设计专业知识需求的限制。

本文专注如何简化和扩展RPA技术,使其更易于通过非技术用户的自然语言指令来实现:

👉 挑战1:理解复杂和多变的用户意图

问题:用户输入的自然语言指令可能包含模糊不清或多义的表达,理解这些复杂的用户意图是具有挑战性的。

解决方式:PromptRPA采用智能代理来解析用户的文本输入,将其转换为明确的任务模型。例如,如果用户输入"组织我的照片并按日期分类",PromptRPA将此解析为具体的文件管理和排序任务,并自动执行这些操作。

👉 挑战2:如何确保RPA任务的高效执行

问题:在动态和复杂的GUI环境中执行自动化任务可能因操作错误或不匹配而失败。

解决方式:PromptRPA通过其智能代理对智能手机操作进行管理,确保自动化任务精确执行。例如,在自动化电子邮件附件的下载过程中,系统会确保正确识别邮件应用中的下载按钮,并模拟点击操作以成功保存附件。

👆的两个解决方案使PromptRPA能够提高任务的自动化成功率,从基线的22.28%提升到95.21%,并且平均每个新任务只需要1.66次用户干预。这显示了PromptRPA在将用户的自然语言指令转化为有效的自动化任务方面的高效能力。

该系统的工作流程如下:

1️⃣ 接收文本提示:用户通过输入文本提示(例如任务的目标或步骤)来表达他们想要自动化的任务。

2️⃣ 文本解析和任务模型生成:这些文本提示被转换成结构化的操作序列。PromptRPA使用一种正式的RPA任务模型来理解这一过程,这个模型描述了从任务开始到完成的整个生命周期。

3️⃣ 智能代理执行:智能代理基于解析的任务模型执行具体的RPA任务。这些代理能够从用户反馈中学习并根据累积的知识持续提高其性能。

PromptRPA通过智能代理自动化了智能手机上的RPA任务生成和执行,显著提高了任务的成功率,并减少了用户干预的次数。这项技术在教程创建、智能助理和客户服务等领域具有广泛的应用前景。

今日 git 更新了多篇 arvix 上最新发表的论文,更详细的总结和更多的论文,

请移步 🔗github 搜索 llm-paper-daily 每日更新论文,觉得有帮助的,帮帮点个 🌟 哈。

相关推荐
视觉&物联智能13 分钟前
【杂谈】-RL即服务:解锁新一轮自主浪潮
人工智能·ai·chatgpt·aigc·强化学习·agi·deepseek
默 语29 分钟前
Spring-AI vs LangChain4J:Java生态的AI框架选型指南
java·人工智能·spring·ai·langchain·langchain4j·spring-ai
FeelTouch Labs32 分钟前
生成PPT的提示词模版
ai·提示词
小付爱coding2 小时前
本地部署dify教程【windows11版本】
java·ai·dify
爱笑的眼睛113 小时前
SQLAlchemy 核心 API 深度解析:超越 ORM 的数据库工具包
java·人工智能·python·ai
phantom_1113 小时前
BeeAI 框架学习记录
学习·ai
Lululaurel3 小时前
AI编程提示词工程实战指南:从入门到精通
人工智能·python·机器学习·ai·ai编程
paopao_wu3 小时前
智普GLM-TTS开源:可控且富含情感的零样本语音合成模型
人工智能·ai·开源·大模型·tts
南龙大魔王3 小时前
spring ai Alibaba(SAA)学习(二)
java·人工智能·spring boot·学习·ai
Elastic 中国社区官方博客3 小时前
在 Google MCP Toolbox for Databases 中引入 Elasticsearch 支持
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索