【PyTorch】设置CUDA_VISIBLE_DEVICES无效的问题以及多卡使用以及CUDA out of memory问题

方法1:

理想情况下,该环境变量应设置在程序的顶部。如果在设置 torch.backends.cudnn.benchmark 之后调用 CUDA_VISIBLE_DEVICES 变量,则更改 CUDA_VISIBLE_DEVICES 变量将不起作用。

复制代码
import os
os.environ["CUDA_VISIBLE_DEVICES"]=<YOUR_GPU_NUMBER_HERE>

方法2:

shell 复制代码
$ CUDA_VISIBLE_DEVICES=1,2 python train.py

REF


问题:单机多卡使用时,指定device不是从0开始时,出现AssertionError: Invalid device id错误

原因:

pytorch默认使用gpu编号为device:0的设备,可以使用

torch.nn.DataParallel(model, device_ids=[0, 1])

对模型进行制定gpu指定编号多gpu训练,必须要有编号为device:0的gpu,不然会报AssertionError: Invalid device id错误;

如果当gpu编号为device:0的设备被占用时,指定其他编号gpu使用torch.nn.DataParallel(model, device_ids=[1, 2])指定gpu编号会出现AssertionError: Invalid device id错误,这是因为pytorch默认使用gpu编号为device:0的设备,需要修改pytorch默认编号;

解决方法

方法1:

python 复制代码
# 使用set_device函数来指定默认GPU使用编号
torch.cuda.set_device(6)

#使用方式
torch.nn.DataParallel(model,device_ids=[6,7,8])

缺点:

  • 必须包含set_device(1)指定的device:1的设备;
  • 且仍然会存在占用一些device:0的gpu内存;

方法2:(推荐)

python 复制代码
# 使用如下方式来指定使用设备,这样会会把device:6改为device:0,
# device:7改为device:1,以此类推. 则pytorch默认的编号还是以device:0开始.
os.environ["CUDA_VISIBLE_DEVICES"] = "6,7,8"

# 指定方式
torch.nn.DataParallel(model,device_ids=[0,1,2])

REF


**问题:**单机多卡训练时,代码只运行了gpu0,并导致CUDA out of memory. 如下图所示:
RuntimeError: CUDA out of memory. Tried to allocate 5.18 GiB (GPU 0; 31.74 GiB total capacity; 21.11 GiB already allocated; 5.10 GiB free; 25.60 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.

解决方法:

with torch.cuda.device(7):

opt = opts().parse()

main(opt)

pytorch在初始化的时候会默认在第0块显卡上进行,会占用一定的显存,这就导致,在第0块显卡空闲内存不多时,程序会反复报上面的错误。

torch.nn.DataParallel

pytorch单机多卡最简单的实现方法就是使用nn.DataParallel类,其几乎仅使用一行代码net = torch.nn.DataParallel(net)就可让模型同时在多张GPU上训练,它大致的工作过程如下图所示:

DataParallel前传与反传工作过程

在每一个Iteration的Forward过程中,nn.DataParallel都自动将输入按照gpu_batch进行split,然后复制模型参数到各个GPU上,分别进行前传后将得到网络输出,最后将结果concat到一起送往0号卡中。

**在Backward过程中,先由0号卡计算loss函数,**通过loss.backward()得到损失函数相于各个gpu输出结果的梯度grad_l1 ... gradln,接下来0号卡将所有的grad_l送回对应的GPU中,然后GPU们分别进行backward得到各个GPU上面的模型参数梯度值gradm1 ... gradmn,最后所有参数的梯度汇总到GPU0卡进行update。

注:DataParallel的整个并行训练过程利用python多线程实现

由以上工作过程分析可知,nn.DataParallel有着这样几个无法避免的问题:

  • 负载不均衡问题。gpu0所承担的任务明显要重于其他gpu
  • 速度问题。每个iteration都需要复制模型且均从GPU0卡向其他GPU复制,通讯任务重且效率低;python多线程GIL锁导致的线程颠簸(thrashing)问题。
  • 只能单机运行。由于单进程的约束导致。
  • 只能切分batch到多GPU,而无法让一个model分布在多个GPU上。当一个模型过大,设置batchsize=1时其显存占用仍然大于单张显卡显存,此时就无法使用DataParallel类进行训练。
    因此官方推荐使用torch.nn.DistributedDataParallel替代nn.DataParallel,即使是单机多卡的情况下。

REF

相关推荐
weixin_437497774 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
cnxy1884 小时前
围棋对弈Python程序开发完整指南:步骤1 - 棋盘基础框架搭建
开发语言·python
喝拿铁写前端4 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat4 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技4 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪4 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子5 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z5 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人5 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风5 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习